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从黎曼流形的观点看非线性

最小二乘平差

白亿同

摘 要

本 文从黎曼流形的观点 出发研 究 了非线性最小二 乘平差
,

并以 张量作为工具导

出了非线性最小二乘中的一 些公式
。

【关键词】 黎 受流形 ; 黎 曼度量 ; 张量 ; 切 空间 ; 余切空间

黎曼流形简介

在三维欧 氏空间里
,

直角坐标分别为 ( X
, y ,

)z 和 x( + dx
, y + d y

, : + d )z 的非常接近

两点间的距离是

d s
“ = d x

“ + d y
“ + d z

Z

( 1 )

如果采用球坐标

x = r s i n甲e o s g
, 夕 = 犷S i n 甲s i n g

, z = r e o s甲

时
,

则

d s
“ = d r

Z + r Z
d甲

2 + r Z s i n
“ 甲d g

“
( 2 )

三维欧氏空 间E “

中给定二维曲面
r = r ( u

, , )
,

则对应于参数值分别为 ( u
, , )与 (u + du

,

v + vd )的曲面上非常接近的两点之间的距离是

d s “ 二 E d u
Z + Z F d u d y + G d y “

( 3 )

它也是曲面的第一基本齐式
,

其中

E = (日r
/ o

u ,
o r /己

u )
, F = ( o r / o

u ,
己r
/ 6

v )
,

G = ( o r
/ 0

, ,
o r /己

v ) ( 4 )

式中圆括号表示 内积
。

式 ( 1 )
、

( 2 )
、

( 3 ) 中的 ds
Z

都是坐标的微分的二次形式
,

它们分别是三维 欧 氏

空间和二维曲面在相应坐标系下的度量
。

把上面的概念加以抽象
,

概括和推广就可给出黎曼

流形概念
。
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下

尹

给定
n维微分流形 (简称流形) M

,

若其坐标邻域里坐标分别为 (二勺和 (二` 十 d二勺的两点

间的无穷小距离面由坐标的微分的二次形式

d s
“ = g ; sd x

`
d x 〕 . ( g 、 , = g ; i ) ( 乐 )

给出
,

且在 M上每一点处它是非退化的
,

则我们称这个二次形式为流形 M 上的黎曼度量
,

记

作 g ,

它是M上的二阶协变张量场
。

流形M与其上的黎曼度量一起就构成了黎曼流形
。

式 ( 5)

中的 g ; ,是定义在坐标邻域 U中的 C `

函数
,

在 U 中各点处 g( , ;
) 是、 义珠型非退化矩阵石

如果这个二次形式在 M上每一点处都是正定的
,

则称这个黎曼流形为真的
,

在其它情况

下的流形称为拟黎曼的或称具有不定度量
。

上面 各例都是黎曼流形的特例
,

且 由式 ( 1 )
、

( 2 )
、

( 3 ) 分别给出了流形上的黎

曼度量
。

我们再举几个例子来说明

例 1 在 n 维仿射空间 R
“

中可 以定义黎曼度量 g为

d s Z = p 1 5 d x 玉d义
’

( 6 )

其中 印 ; :
) 是所有元素均为常数的二 x n型正定对称矩阵

,

这时 R
“

就成为 , 维欧氏空 l’@
,
,

记

作 E
” 。

可以看出 印
; j ) 给出了 E

.

上的内积
,

故黎曼度量是内积概念的推 广
。

若取 (P
: :
)

为单位矩阵
,

则

d s
“ 二 ( d x 鑫

)
2 + … + ( d义

”

)
“

E
”

是真黎曼流形
。

E
”

的对偶空间 ( E
“

) 带 也是 n 维欧 氏空间
,

其上的内积 由 (P 、 、 ) 的逆矩阵

( p ` ’
) 定义

,

即 p ` ’ p , 、 = 6亡
。

例 2 物理学中最重要的流形之一
: 阂可夫斯基时空中取黎曼度量为

d s Z = ( d r )
2 一 ( d x

l
)
“ 一 ( d x

Z
)
2 一 ( d义

3
)
“

它是拟黎曼流形
。

ds 是两点间的距离
,

与坐标系的选择无关
,

故式 ( 弓 ) 是不变量
, g ` :

是二阶协变张公

的分量
,

称为黎曼度量的协变分量
,

设在坐标邻域 U 与 U 中 其分量分别 为 g ; , 和 g 、 . ,

则在

U n U中有变换式

g ; , = ( 6“ k
/ 6 x ’ ) ( OX `

/ O
x ’ ) g 、 ,

( 7 )

在坐标邻域 U 中设矩阵 g(
; j ) 的逆矩阵为 g( ` ’ ) 即 g ” g : 、 二

帆
,

则 g ` ’ 称为黎曼度量的逆变

分量
。

在坐标变换下
,

它满足关系式

g ` j = ( o x ’
/ o x

k
) o x ’

/ e x
`
) g

k ` ( 8 )

由此可见g ; ,满足逆变规律
,

而 g ` ’
满足逆变规律

。

利用协变张量 9 i j和逆变张量 g ` ’ ,

按如下方法
,

可 以从一个逆变向量
, “ ,

作出协变向量

气
,

从一个协变向量
v ,
作出逆变向量

, “ ,

即
, J = v 19 1 , , , k = v s g j k

流形M在点义处的切空间 T
二

M中任意二 向量 u和 v 的内积
,

由

( u
, v ) = g : j u ` , j ( 9

、

)

来定义
,

其中“ `
为逆变向量 u 的分量

。

余切空间 T萝M 中任意 u 命和户的内积
,

由

( u气
, . ) 二 9 i j环 i v j

来定义
,

其中u 、
为协变向量。 米的分量

。

切空间或余切空间中任意两向量的正交性 均 可 利 用

这里使用了哑指标
.

即爱因斯坦求和规定
.

以后我们经常采用这一规定
.



相应空间中的内积来走义
。

若N为流形 M的子流形
,

对于N 上的任一点
x
处有

, T 二

N二 全
二

M
, T份N 二 T梦M

。

全
二

N 在
T 二

M 中的正交补空间记作 ( T
:

N 户
,

我们把它称作N 在点 x 处的法空间
。

类 似 ( T 贾N 歼 称作

N 在点 x处的余法空间
。 丫

2 欧氏空间的超曲面

由于非线性最小二乘平差中的数学模型绝大多数均可看作欧氏空间中的超曲面
,

为利用

黎曼流形研究非线性平差 问题
,

我们首先讨论超曲面上的黎曼度量
。

2
.

1 用参数方程表示的超曲面

若 m维欧氏空间E 口中的超 曲面M 由

, 协 = f
卜

( x i
)

咯 、

( 1 0 )

表示
,

其中协= 1 ,

…
,
m

, 玄= 1
, … n , n < m

, r a n k ( Of
u

/ 6 x
` ) = n 。

这时超曲面 M是 E ,

的” 维

子流形
。

令 f = 〔f ` j
Z… j

“
〕

, X 二 ( x
` x Z… x

“

)
,

则 a f /欲
`

为流形M在点 x 。

处的切空间 T 二 。
M 的基

底
。

若 E “

中的内积 (即黎曼度量 g ) 由式 ( 9 ) 给出
,

即 E ’

中任意二向量
“ , v

的内积为

( u
, v ) 二 p , A u p , 轰 ( 1 1 )

其中“ “

为 u 的逆变分量 E “ 。

在点 f ( x
。
)处的切空间记作 T

二 。 E
“ ,

它是 m维欧氏空间
,

坐标 原 点

移至了
, x(

。
)

, T
二 。
M是 :

二 。 “
·

的子空间
。

由砂的内积可诱导出 :
二 。 “ 二

的内积和M的黎曼度量
,

T
二 。 E “

的内积与 E
口

的内积相同
,

仿效式 ( 4 ) 可诱导出流形M的黎曼度量 g

g ; ; = ( Of / OX
’ ,

e f /日x
’ ) = p , 、 Ot

,

/ e x
’ e f 入 /Ox

’
( 1 2 )

于是M成为一个黎曼流形
,

这样M上任意点处的切空间 T
: 。

M上也就有了内积
,

因而切空间是

扑维欧氏空间
。

注意在 2
.

1中
,

我们使用希腊字母协
、

入等表示向量 f的分量的指标
,

其取值为 1 , … ,
m ,

用英文字母 i
、

j等表示参数向量 x 的分量的指标
,

其取值为 1
, … , n

。

在后面 3
.

1中仍然这

样使用 指标
。

2
.

2 用方程组表示的超曲面

若 n 维欧氏空间 E
“

中的超曲面N 由

F ,
( x i

) 二 0 ( 1 3 )

表示
,

其中 艺= 1
, … , n , “ = 1 , … ,

m
,
附 ( n , r a n k ( OF

卜

/ o x ` ) = 。 ,

这时超曲面 N为 E
.

的

n 一 仍维子流形
。

由 E
”

的黎曼度量诱导出流形 N 的黎曼度量是有困难的
。

现利用流形 N 的余切

空间和余法空间来研究流形本身
。

令 F = ( F ` … F “
)
, x = ( x ` … 二

“

)
,

流形 N 在 x 。

处的余切空

间 T萝
。
N为

( OF
,

/ O二
` d ) x

` = 0

它是 E
“

在点x 。

处的余切空间 T萝
。 E

n

的子空间
。

T萝
。 E

“

是” 维欧氏空间
,

坐标原点位于 x 。 ,

它

与 E
“

的对偶空间 ( E
”

)带 同构且等距
。

若 E
。

的内积由正定对称矩阵 ( p
; : ) 给出

,

则 ( E
”

) . 与

”
。 E

.

的内积都由 (P ` , )的逆矩阵 ( p ` ’ ) 来定义
。

乓



丫

T竺。 E
”

的基底为d “
,

而 d F
’ = ( 。F ”

/ a x `
) d“ 为余切空间 T竺

。
N 的正交补空间 ( T萝

。
N 户

(即余法空间 ) 的基底
。

根据 ( E
“

)
.
的内积 ( p “ )可诱导 出 ( T :

。
N 户的内积为

g
卜 人 二

( d F
p ,

d F 入
) = p i `OF

,

/ O二
` OF 人 / O二

’
.

( 1 4 )

这里用名
,

i
, 化等表示 E

”

中向量 x 的分量的指标
,

取值为 1 , … , 。 ,

用 林,
入等表示向量 F 的分

量的指标
,

取值为 1 ,

一
,
m

。

在后面的 3
.

2 中仍然这样使用指标
。

`

综上所述
,

可知由 l( 0) 式给出的流形M是黎曼流形
,

在 M 上任意点处的切空间 T
二 。

M

上都定义了内积
。

可以证明由 ( 1 3) 式给出的流形 N上也可定义黎曼度量
,

但由E
“

的内积来

诱导出它则有困难
。

在上面 2
.

2 中我们在 N 上任意点处的余法空 间上都定义了内积
。

这对

研究条件平差是很有用处的
。

式 ( 1 2 ) 和式 ( 1 4 ) 可以分别看 作 式 ( 7 ) 和 式 ( 8 ) 的 推

广
。

式 ( 7 ) 反映了黎曼度量的不变性
,

所有指标取值均与流形维数相同
,

式 ( 1 2 ) 则为由

大流形的黎曼度量诱导子流形黎曼度量的关系式
,

希腊字母指标取值与大空间的维数相同
,

英文字母指标取值则与子流形维数相 同
。

户

3 非线性最小二乘平差问题

3
.

1 间接平差

设误差方程为

v 卜 = 了
“
( x ) 一 L 卜 ( 1 5 )

式中 L ,

表示观测值
, , “

表示改正数
, x表示未知参数向量

,

其分量为二 ’ , 协二 1 , … , 。 ,
弓=

1
, … , ” , , < m

, r a n k ( o f
p

/ O x
`
)
= , ,

权阵 ( p
: j

)为m x m型对称正定矩阵
。

.

将 ( 15 ) 式在 x 。
附近局部线性化

, 卜 =
( o f

,

/ 0二
’
)
。
( x ` 一 二孟) 一 ( L

, 一 了
协

( x
。
) ) ( 1 6 )

这里 x ;为向量 x 。

的逆变分量
。

令 x ` 一 x 占= 6二 ` ,
乙
卜 = L 协 一 f

p

( x
。
)
,

( 1 6 ) 式变为
v 卜 = ( o f

卜

/ o x
`
)
。
6二 ` 一 乙p

( 1 7 )

设 衅
= 了

”

x( )
,

它就是 ( 10 ) 式表示的 。 维流形 M
,

而且还是 E ,

的子流形
,

由前面所述可知

( al a/ x ’ ) 。 张成流形 M在点 x 。

处的切空 间zT
。
M

,

而 T
二 。
M是 T

二 。 E ’

的子空间
,

以 z
,

为逆变分

量的向量 乙在 T
· 。 E ’

中 (参看图 1 )
。

叭
。

尸

图 土



设 E “ 、

的内积 由权阵 ( p
, 、 ) 给出

。

根据正交投影定理
,

并注意到 ( 17 ) 式
,

可知在 T
二 。

M 中

存在唯
一

个 e
,

使得 日卜 , lj = If
v
l}

2 =
(
v , v ) = p , 。 v ,

” 最小
,

且 忍一 e 正 交于 T
二 。

M

设盲
=
0x̂

, af a/ 二 ,
( 这 里把下标

“ o ”
省略

,

以下同 )
,

则有

( 乙一 6 x j o f /日x
` ,

6 f /己二
` ) = o

r

且p

( o f /日%
’ ,
己f /O二

` ) 6 二
`

, = (日f / 0戈
` ,

不) ( 1 8 )

这就是法方程
,

其系数 ( Of /。二
’ , 。 f / a x ` ) = g , j = p , 、 Of

卜

:a/ x ` af 轰 / a x `是M上的黎曼度量
,

在

点 x 。
处则为切空间 T

二 。
M的内积

,

常数项 ( 。 f /。 x ` ,
z ) = ( p

, 、 。f
,

/ a x `
)乙

` 。

由于 ( g
, ,
) 是正

定的
,

故方程组 (1 8) 存在唯一解
。

〔们 中引入虚拟观测值
,

并假定其权取负数
,

这时权阵 (P , i ) 是非退化的
,

但 不 是

正定的
,

由 p , 、
诱导出来的 g : ,也是如此

,

故相应流形 M是拟黎曼流形
。

由此可见拟黎曼流形

对我们来说也是有用的
。

.a0 2 条件平差

设条件方程为

F 卜 ( x ) = 0
,

(卜 = 1 , … m ) ( 1 9 )

其中 x 为未知参数向量
,

其分量为 x ’ (艺= 1 , … ,

的
,
m < , ,

ar kn (日F
,

a/ x ` ) = m
,

权阵

( p
.
户 为” x ” 型正定矩阵

。

设不和 , 分别为 , 的观测值向量和改正数向量
,

且其分量分别为护

和 v ’ ,

它们之间有关系二 ` = 乙̀ + , ` 。

将 ( 19 ) 式在乙附近局部线性化

F p

(忍) + ( OF
,

/日x ’
)

, , ’ = o

记 w
“ = 一 F p

(忍)
,
OF

协

/ 0 1
` = ( OF

p

/ 0二
` )

, ,

可得

( OF
卜

/ 0乙
` ) , ’ = w

,

( 2 0 )

设`
“
( x ) = 恻 ( x ) 一 F ”

(忍)
,

这时 G
协
( x)

= 0 表示丑
”

的
, 一 m维子流形 N

,

且乙在流形 N上
。

( OF
卜

/ 0 1
`
)
, ` = 0

丫

表示流形 N在点艺处的余切空间 T兮N
。

又知余法空间 ( T亨N )
上

的基底为 d F
, = ( OF

,

/ 0艺
` , … ,

OF
卜

/ a不
。

)
。

T节N 和 ( T于N )
1

都是 T 兮E
“

的子空 间 (参看图 2 )
。

若 E
”

的内积 由权阵印
、 j )

给出
,

则 ( E
“

)
. 和 T 借E

“

的内积都由 (P j j
) 的逆矩阵 (P ` ’

)

来定义
。

设 v 。 = ( v 丢
, … v 合) 适 合方程 ( 2 0 )

,

按照 [ 3 〕 中的

提法
,

( 2 0 ) 式表示过点 v0
,

且平行于 T兮N 的线性 子 流 形

v 。 + T 兮N
。

因为我们现在是在余切空间 T 兮E
”

中讨论
,

又 T兮E
“

是协

变空间
,

故应将 v 的逆变分量变换为协变分 量
。

为 此
,

将

v ` = v , g 云`
代入 ( 2 0 ) 式得

( a F
,

/。
二 ’ ) v 一g “ = w

“

F+ 开 N
从
火 4

了厂矛

图 2



( d F, , v ) == w
卜

( 2 1 )

丫
根据 〔 3 〕 中的新投影定理

,

在 v 。 + T , N中存在唯一向量干
,

使 “ 甸!
2 二 ( 芬

,

v̂ ) 二

p ; , v * v ;
最小

,

且 v 任 ( T份N )
`

于是 v可亩 ( T今N ,
`

的基底遇夕
,

线性表示
,

即

v = t , d F

又因 Iv 任 v 。 + T节M
,

故它满足方程 ( 2 1 )
,

于是有

( d F
卜 ,

t 、 dF 轰
) = w

卜

目口

( d F
卜 ,

dF 轰
) t

: = w
卜

( 2 2 )

( 2 2 ) 式就是联系数的法方程
,

而方程的系数 d( F
, ,

d补 ) 二 g , 孔 = 沪 `
韶

,

a/ 尸 a孙 a/ 二 ’ 是流

形N在点乙处的余法空间 ( T亏N 卜的内积
。

由上面讨论可以看 出间接平差是在切空 间 T
二 。 E

“

中进行的
,

而条件平差则 是 在 余切空

间 T兮E
’

中进行的
。

间接平差是用流形M的切空间 T
: 。 M来近似代替流形本身

,

而条件平差 是

用流形 N 的余切空间 T兮N来近似代替流形本身的
。

切空间与余切空间是互为对偶的空 间
,

间

接平差与条件平差也是互为对偶的问题
。

使用类似于张量 中的指标法能够很好地体现这种对

偶关系
。

4 结束语

户

黎曼流形为非线性最小二乘平差提供了
“
直观的

” 几何模型
,

实现了分析方法
、

几何方

法 与概率统计方法的三结合
,

使我们对非线性最小二乘平差有了更加深入地理解
。

〔 3 〕 中

从几何角度出发找出了两种平差方法的共
财

质
,

现在我们又从几何角度严格地区分了它们

的不同之处
,

深刻地揭示了它们之间的联系与区别
。

流形理论中的一些概念为非线性最小二

乘平差的研究建立起一种图象思维的新方法
,

开辟了一条新的途径
,

对推动科研工作会大有

裨益
。
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