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摘　要：针对现有自协方差最小二乘噪声估计结果非正定的问题，提出了一种能够有效克服数据长度不够以

及先验信息不准的改进算法，保证噪声估计结果的正定性，从而提高自协方差最小二乘噪声估计的精度。数

值仿真实验验证了该方法的正确性和有效性。
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　　Ｋａｌｍａｎ滤波理论被广泛应用于卫星导航定

位、系统控制、信号处理等方面［１，２］。标准 Ｋａｌ

ｍａｎ滤波需建立在数学模型确定以及噪声特性已

知的基础上，但实际应用中，噪声信息基本都是未

知的，使得滤波结果次优，甚至发散。目前，主要

有４类自适应Ｋａｌｍａｎ滤波方法用于噪声协方差

估计，包括贝叶斯法、极大似然法、相关法和协方

差匹配法［３６］。其中贝叶斯法和极大似然法计算

效率较低，协方差匹配法得到的结果是有偏的，相

关法则被应用得最为广泛，但需要两步计算状态

噪声和观测噪声协方差［７９］。Ｏｄｅｌｓｏｎ提出了一

种自 协 方 差 最 小 二 乘 （ａｕｔｏｃｏｖａｒｉａｎｃｅｌｅａｓｔ

ｓｑｕａｒｅｓ，ＡＬＳ）算法，该方法可同时计算状态噪声

和观测噪声协方差，且其计算精度明显优于相关

法［１０］；相关法和 ＡＬＳ算法的主要缺陷在于无法

保证计算结果的正定性，Ｒａｊａｍａｎｉ在此基础上提

出了 ＡＬＳＳＤＰ算法，该方法对最小二乘估计进

行半正定约束，无法保证观测噪声协方差矩阵的

正定性，亦无法克服数据长度不够、先验噪声协方

差矩阵偏差较大或构造的最小二乘估计法方程系

数阵病态对估计结果带来的误差影响［１１］。本文

提出了一种自协方差最小二乘噪声估计的改进算

法（ｉｍｐｒｏｖｅｄａｌｇｏｒｉｔｈｍｏｆａｕｔｏｃｏｖａｒｉａｎｃｅｌｅａｓｔ

ｓｑｕａｒｅｓ，ＩＡＬＳ），用于保证计算结果的正定性，提

高噪声估计的精度。

１　自协方差最小二乘噪声估计

根据相关法的基本思想，ＡＬＳ算法通过构造

基于新息的状态空间模型，将原本需两步进行的计

算整合为一步，避免了分步计算可能带来的误差，

最后通过最小二乘估计得到最优的结果［１０，１１］。

离散线性时不变系统为：

狓犽＋１ ＝犃狓犽＋犅狌犽＋犌狑犽

狔犽 ＝犆狓犽＋狏犽
（１）

式中，狑犽～犖（０，犙），狏犽～犖（０，犚），狑犽 和狏犽 不相

关。状态噪声协方差矩阵犙及观测协方差矩阵犚

一般假定为对称正定矩阵。

用狓^犽＋１｜犽表示预测状态向量，犔表示稳态的卡

尔曼滤波增益，ε犽 表示预测状态向量的误差，令

珚犃＝（犃－犃犔犆），珚犌＝［犌 犃犔］，珚狑犽＝［狑犽　狏犽］
Ｔ，新

息犢犽＝狔犽－犆^狓犽｜犽－１。构造基于新息的状态空间模

型为：

ε犽＋１ ＝珚犃ε犽＋珚犌珚狑犽

犢犽 ＝犆ε犽＋狏犽
（２）

预测状态向量协方差犘＝犈（ε犽ε
Ｔ
犽），稳态滤波时，

其满足Ｌｙａｐｕｎｏｖ等式：

犘＝珚犃犘珚犃
Ｔ
＋珚犌

犙 ０

０
［ ］

犚
珚犌Ｔ （３）

由式（３）可知，预测状态向量协方差犘与状态噪



　第３７卷第１０期 罗志才等：自协方差最小二乘噪声估计的改进算法

声协方差矩阵犙、观测协方差矩阵犚相关。同时

令犚（犖）＝［犈（犢犽犢
Ｔ
犽） … 犈（犢犽＋犖犢

Ｔ
犽）］

Ｔ，由此，

新息 犢｛ ｝犽 的相关函数犚（犖）可表示为：

犚（犖）＝

犆

犆珚犃



犆珚犃犖－

熿

燀

燄

燅
烐烏 烑

１

犗

犘犆Ｔ＋

１

－犆犃犔



－犆珚犃
犖－２

熿

燀

燄

燅
烐烏 烑
犃犔

Γ

犚 （４）

犚（犖）是关于犘和犚 的函数，顾及犘与犙、犚 相

关，将式（３）代入式（４），并进行克罗内克积运算，

最后整理为：

犚（犖）犛 ＝［（犆犗）（犐－珚犃珚犃）
－１］（犌犌）犙狊＋

［（犆犗）（犐－珚犃珚犃）
－１（犃犔犃犔）＋

（犐Γ）］犚狊

（５）

式中，“”表示克罗内克积算子，下标“狊”表示矩

阵按列序排列。通过构造基于新息的状态空间模

型，将新息 犢｛ ｝犽 的相关函数犚（犖）表示为状态噪

声协方差矩阵犙和观测协方差矩阵犚 的函数，由

此可同时对犙、犚进行估计。

新息 犢｛ ｝犽 的相关函数犚（犖）中各元素可由下

式计算得到：

犈（犢犽犢犽＋犼）＝
１

犖－犼∑
犖－犼

犻＝１

犢犽犢犽＋犼，犼＝０，１，…，犖－１

（６）

可采用最小二乘估计的方法对状态噪声协方差矩

阵犙和观测协方差矩阵犚进行估计：

犡犙犚 ＝ （犃
Ｔ
ＬＳ犃ＬＳ）

－１犃ＴＬＳ犚（犖）狊 （７）

式中，犡犙犚＝［犙狊 犚狊］
Ｔ；犃ＬＳ＝［犃犙 犃犚］

Ｔ；犃犙＝（犆

犗）（犐－珚犃珚犃）
－１（犌犌）；犃犚＝（犆犗）（犐－珚犃

珚犃）－１（犃犔犃犔）＋（犐Γ）。

２　改进算法

ＡＬＳ估计的噪声协方差是否正定与先验噪

声协方差以及最小二乘估计精度有着直接的关

系。先验噪声协方差偏差越大，由此计算得到的

新息及其相关函数也存在着较大误差，同时易导

致最小二乘法方程病态，估计结果不稳定；数据长

度不够时，即使法方程良态，若某一未知数的方差

较大，估计精度也较低。这两种情况均无法保证

ＡＬＳ噪声协方差估计结果的正定性。

ＡＬＳ法方程的病态问题一般也是由于先验

噪声协方差的误差引起的，迭代计算则是克服先

验噪声误差影响的有效方法，但必须满足每次迭

代计算结果的正定性。ＡＬＳ算法无法保证中间

迭代结果的正定性，无法进行迭代计算；ＡＬＳ

ＳＤＰ算法只能保证结果的半正定性，无法保证观

测噪声矩阵的正定性，也无法保证稳态滤波增益

有唯一稳定解。本文通过直接对中间迭代结果的

对角线元素进行绝对值运算，实现对其正定约束，

满足迭代要求；也减小了噪声协方差矩阵中的负

对角线元素的真误差，使其更加逼近其真值。

数据长度不足时，由式 （６）计 算 的 新 息

犢｛ ｝犽 的相关函数犚（犖）将存在较大误差，如果噪

声协方差矩阵中某一对角线元素的估计精度较

差，受犚（犖）误差影响明显，此时即使 ＡＬＳ法方

程良态，也无法保证噪声估计结果的正定性。为

了改善这一情况，本文对式（７）附加约束条件：

犌Ｔ犡＝０ （８）

式中，犌可通过求解以下线性方程得到：

犖ＬＳ犌＝ 犖ＬＳ 犲 （９）

式中，犖ＬＳ＝犃
Ｔ
ＬＳ犃ＬＳ，犲＝［１，１…，１］

Ｔ。则附加约束

条件的最小二乘函数模型为［１２］：

犃ＴＬＳ犃ＬＳ犡犌＋犌犓－犃
Ｔ
ＬＳ犚（犖）狊 ＝０

犌Ｔ犡犌 ＝
烅
烄

烆 ０
（１０）

式中，犓＝（犌Ｔ犙狇犌）
－１犌Ｔ犙狇犃

Ｔ
ＬＳ犚（犖）狊，犙狇＝（犃

Ｔ
ＬＳ

·犃ＬＳ＋犌犌
Ｔ）－１。此时附加约束条件的最小二乘

估计为：

犡犌 ＝犆犙狇犃
Ｔ
ＬＳ犚（犖）狊 （１１）

式中，犆＝犐－犙狇犌（犌
Ｔ
犙狇犌）

－１犌Ｔ。

附加约束条件的最小二乘估计满足以下性

质。

性质１　附加约束条件的最小二乘估计犡犌

是犡 的无偏估计：

犈（犡犌）＝犆犙狇犃
Ｔ
ＬＳ犈［犚（犖）狊］＝犆犙狇犖ＬＳ犡

（１２）

同时顾及，犆＝犐－犙狇犌（犌
Ｔ
犙狇犌）

－１犌Ｔ，犙狇犖ＬＳ＝犐－

犙狇犌犌
Ｔ，犌Ｔ犡＝０，由此可得：

犈（犡犌）＝犡 （１３）

　　性质２　附加约束条件的最小二乘估计犡犌 的

均方根误差小于最小二乘估计犡犙犚的均方根误差。

犡犌 的均方根误差 ＭＳＥ（犡犌）＝ｔｒ（犇犡犌）＝

σ
２ｔｒ（犆犙狇犖ＬＳ犙狇犆

Ｔ），犡犙犚的均方根误差 ＭＳＥ（犡ＬＳ）

＝σ
２ｔｒ（犖－１

ＬＳ），可证明ｔｒ（犆犙狇犖ＬＳ犙狇犆
Ｔ）＜ｔｒ（犖

－１
ＬＳ），

具体的推导过程可参考文献［１２］，由此可得：

ＭＳＥ（犡犌）＜ ＭＳＥ（犡犙犚） （１４）

　　附加约束条件，等效于加入了虚拟观测量，改

善了法方程的条件数，可有效克服最小二乘法方

程病态所带来的误差影响，提高最小二乘估计中

精度较差的未知量的估计精度，使得噪声协方差

矩阵的估计精度将得到改善；并采用模型（１０）代

５６１１
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替最小二乘估计函数模型，保证估计的无偏性。

由此本文提出一种ＩＡＬＳ算法，计算流程如

图１所示，具体的计算步骤如下。

１）给定先验的犙和犚；

２）构造ＡＬＳ法方程系数阵，并判读其是否

病态，如果法方程良态，则转入步骤３），否则转入

步骤４）；

３）进行最小二乘估计，转入步骤５）；

４）附加约束条件进行最小二乘估计；

５）判断犙和犚 是否收敛，如果未收敛，转入

步骤６），否则转入步骤７）；

６）犙和犚的对角线元素直接取其绝对值，即

犙犻犻＝ 犙犻犻 ，犚犻犻＝ 犚犻犻 ，并转入步骤２）。

７）判断犙和犚 是否正定，如果犙和犚 非正

定，则转入步骤４），否则输出结果。

图１　自协方差最小二乘估计的改进算法流程图

Ｆｉｇ．１　ＦｌｏｗＣｈａｒｔｏｆｔｈｅＩｍｐｒｏｖｅｄＡｌｇｏｒｉｔｈｍｆｏｒ

ＡｕｔｏｃｏｖａｒｉａｎｃｅＬｅａｓｔｓｑｕａｒｅｓ

通过附加约束条件，使法方程的病态性得到

改善，估计结果更加稳定，估计精度也得到提高。

通过步骤２）～步骤６）的迭代计算能有效克服先

验噪声不准以及由此引起的法方程病态所带来的

估计误差；迭代收敛且法方程良态、但估计结果非

正定，仍然可采用附加约束条件的最小二乘估计

来提高估计精度，保证估计结果的正定性。

３　数值仿真实验

采用文献［１１］中的算例为例：

狓犽＋１ ＝
０．７３２ －０．０８６

０．１７２ ０．
［ ］

９９０
狓犽＋

１ ０

０ ０．
［ ］

２
狑犽

狔犽 ＝狓犽＋狏犽 （１５）

式中，狑犽～犖（０，ｄｉａｇ［０．５，０．２］），狏犽～犖（０，ｄｉａｇ

［１，２］）。

为了对本文提出的ＩＡＬＳ与其他算法进行比

较分析，设定数据长度为１０００，分别按以下４个方

案各进行２００次蒙特卡洛仿真。

方案１）　采用 ＡＬＳ，先验 犙＝ｄｉａｇ［０．５　

０．２］，犚＝ｄｉａｇ［１　２］；

方案２）　采用 ＡＬＳ，先验犙＝ｄｉａｇ［５０ ２０］，

犚＝ｄｉａｇ［０．０１ ０．０１］；

方案３）　采用ＡＬＳＳＤＰ，先验犙＝ｄｉａｇ［５０　

２０］，犚＝ｄｉａｇ［０．０１ ０．０１］；

方案４）　采用ＩＡＬＳ，先验犙＝ｄｉａｇ［５０ ２０］，

犚＝ｄｉａｇ［０．０１ ０．０１］。

图２～图５给出了各方案的噪声估计结果统

计图。从图２看出，虽然先验噪声无偏差，且法方

程良态，但由于数据长度不足，造成犙（２，２）的估计

精度较差，采用ＡＬＳ并不能保证其估计结果的正

定性。可以看出，先验噪声偏差较大，使得ＡＬＳ法

方程病态，估计结果不稳态，此时，方案２的估计精

度明显低于方案１的估计精度，表明采用ＡＬＳ的

估计结果受先验噪声的影响明显。可以看出，采用

ＡＬＳＳＤＰ仅是将原本非正定的估计结果约束到不

　　

图２　先验噪声无偏差

时ＡＬＳ估计结果

Ｆｉｇ．２　ＮｏｉｓｅＥｓｔｉｍａｔｅｓ

ｗｉｔｈＵｎｂｉａｓｅｄＰｒｉｏｒｉ

ＮｏｉｓｅｆｒｏｍＡＬＳ

　 　

图３　先验噪声有偏

时ＡＬＳ估计结果

Ｆｉｇ．３　ＮｏｉｓｅＥｓｔｉｍａｔｅｓ

ｗｉｔｈＢｉａｓｅｄＰｒｉｏｒｉ

ＮｏｉｓｅｆｒｏｍＡＬＳ

　 　　

图４　先验噪声有偏

时ＡＬＳＳＤＰ估计结果

Ｆｉｇ．４　ＮｏｉｓｅＥｓｔｉｍａｔｅｓ

ｗｉｔｈＢｉａｓｅｄＰｒｉｏｒｉ

ＮｏｉｓｅｆｒｏｍＡＬＳＳＤＰ

　 　

图５　先验噪声有偏

时ＩＡＬＳ估计结果

Ｆｉｇ．５　ＮｏｉｓｅＥｓｔｉｍａｔｅｓ

ｗｉｔｈＢｉａｓｅｄＰｒｉｏｒｉ

ＮｏｉｓｅｆｒｏｍＩＡＬＳ
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等式约束的边界上，并不能保证估计结果的正定

性，也无法克服先验噪声偏差所带来的误差影响。

从图５中可以看出，采用ＩＡＬＳ不仅能有效克服先

验噪声偏差所带来的误差影响，也能有效保证估计

结果的正定性，并且估计结果的精度明显改善。

表１给出了各方案的噪声估计的平均值和标

准差。方案１中犙（２，２）分量的估计精度相对较

差，无法保证其估计结果的正定性。当先验噪声

偏差较大时，导致构造的 ＡＬＳ法方程系数阵病

态，使得方案２）和方案３）的估计结果的精度明显

低于方案１），特别是犙（２，２）分量受先验噪声偏

差的影响明显，通过半正定约束后，方案３的估计

精度整体上略优于方案２）；方案４）中，犙（１，１）和

犚（１，１）分量的估计精度与先验噪声无偏差时的

ＡＬＳ估计精度一致，通过迭代计算和附加约束条

件的最小二乘估计，有效提高了犙（２，２）和犚（２，

２）分量的估计精度，其估计精度最高。同时可以

发现，采用ＩＡＬＳ算法时，犙（２，２）的估计结果是有

偏的。对迭代收敛但非正定的估计结果再进行附

加约束条件的最小二乘估计，通过提高估计精度

来保证估计结果的正定性，使得噪声估计的验后

误差不再服从高斯正态分布，估计结果必然是有

偏的。

表１　噪声估计平均值和标准差

Ｔａｂ．１　ＭｅａｎａｎｄＳｔａｎｄａｒｄＤｅｖｉａｔｉｏｎｏｆＮｏｉｓｅＥｓｔｉｍａｔｉｏｎ

犙（１，１） 犙（２，２） 犚（１，１） 犚（２，２）

平均

值

方案１ ０．４９９ ０．２０８ １．００７ １．９９８

方案２ ０．４８８ ０．７２１ １．０１４ １．９８３

方案３ ０．４９７ ２．１２１ １．００６ １．９６４

方案４ ０．５００ ０．２９８ １．００１ １．９８７

标准

差

方案１ ０．０６９ ０．３７４ ０．０７６ ０．１１１

方案２ ０．１４４ ４．４３２ ０．１１７ ０．１７９

方案３ ０．１１３ ２．６７３ ０．１０６ ０．１５４

方案４ ０．０７０ ０．１８８ ０．０７６ ０．０９８

４　结　语

自协方差最小二乘噪声估计结果非正定主要

是由于某一对角线元素对应的估计精度较差所引

起的，而用于噪声估计的数据长度不够以及先验

噪声协方差偏差较大是引起这一问题的主要因

素。本文提出的自协方差最小二乘改进算法通过

迭代计算克服先验信息的影响，迭代策略简单有

效，在迭代过程中，采用附加约束条件的最小二乘

估计算法来克服由先验噪声误差引起的法方程病

态问题，加快迭代收敛的速度；对迭代收敛且法方

程良态、但仍然非正定的估计结果再进行一次附

加约束条件的最小二乘估计，可有效克服数据长

度不够所带来的影响，通过牺牲估计结果的无偏

性来提高估计精度，从而保证噪声估计结果的正

定性。需要说明的是，当噪声矩阵的某一对角线

元素数值较小但精度较高时，采用本文算法也无

法保证结果的正定性。
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