
非线性函数的协方差传播公式

徐 培 亮

摘 妻

本文首先导 出非线性函数 的协方差传播的一般公式
,

将此公式简化
,

可得到一

次 的和含有二次项的协方差传播公式
。

然后证明 了 H
.

W 0 ir 的含有二次项的传播公

式是该公 式的一个近似
。

【关抽询】 非线性 , 方差协方差传播 , 应用

众所周知
,

非线性的观测值函数的精度计算一般是采用只含一次项的误差传 播 定 律
。

H
.

W of f 在 1 9 6 1年 ” ’ 提出了一个含有二次项的误差传播公式
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其中
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分别是函数 f 的关于
x 、
的一阶导数

,

f 的关于
x ;

的二阶导数
,

f 的关 于
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,
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下面从方差 的一般概念出发
,

推导一个含有二次项的误差传播公式
,

近似可以得到含有

一次项和二次项的中误差传播公式
,

并简略地讨论观测值相关时的公式
。
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一 般 公 式

设观测值及其误差为
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又设观测值的函数
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Y=甲 ( x, , X : , … x 。

) = 甲 ( X )

现在来求函数 Y 的方差
。

将 Y展开成台劳级数为
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。

则 ` 2 ’ 可写 “
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但不能同时相等
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( 1 0 ) 三式就可以计算任一观测值函数的精度
。

公式 ( 7 )

度计算的一般公式
,

可以用在一般情况下的精度计算
,

例如
, x : , x : , … x .

彼此相关
,
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,

或是彼此独立
,

它们的分布可以是正态的
,
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。
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如果我们只考虑到二次展开项
,

略去高阶项 R
,

便得到一个含有二次项的中误差传播公

式
,
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,
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( 11 ) 式就是当随机变里
x : 、 x : 、

…
、 x 。

相互独立且服从正态分布时
,

一般函数 Y =

甲x(
, , x : , …从 ) 的顾及二次项的精度计算公式

。

通常
,

E ( X ) 是未知的
,

但巳知一组观测值
x : , x : ,

… x , ,

在公式 ( 1 1 ) 中用
x : ,

…
, x

.

代替其相应的期望值 (E
x ; )

,
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)
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。
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得到 Y 的精度估计公 式
,
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。
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其中B矩阵是 B :
中把 X代替 E ( X ) 后得到的

。

公式 ( 1 2 ) 就是含有二次项的中误差传播公式
。

特别是
,

如果只取公式 ( 7 ) 中右边的第一项
,

并用观测值
x : , x : , … , x :

代替相应的

期望值
,

即得到仅含有一次项的中误差传播公式
:
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因此
,

含有一次项的协方差传播公式是本文公式的近似
。

改写公式 ( 12 ) 成为
:
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如果我们略去上式右边的最后一项
,

即得到H
.

W。吐的含有二次项的中误差传播公式
。

因 此

H
.

w of f 的含有二次项的中误差传播公式是本文公式的近似
,

且它们有关系式
:

会
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其中
,

m爹
,

代表 H
.

W ul f 的计算公式
。

这一结论的证明是容易的
,

只要我们在公式 ( 6 ) 中略去右边第二项
,

并按木义的推导

过程即可得到 H
.

W ul f 的计算公式
。

三
、

观测值相关时含有二次填的协方差传播公式

在公式 ( 7 ) 中略去高阶项 R 即得到观测值相关时的含有二次项的协方差传播公式
。

根据矩阵分解得到另一个计算公式
。

设随机变量 x : , x : …
, x 。

是具有方差阵为 D
:

的正态分布随机向量
,

则由于 D
二

的正定
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D
二 = T入T

T
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,

入是 D
:

的 n
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。
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Z = T T X

则

E ( Z ) 二 T T E ( X )
,

D z = 入
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二
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,

具有方差阵为 入
。

根据本文的推导过程可得
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二 a +

一

乡
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, a 的表示式如式 ( 3 )
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l ,
入2 , … ,
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。

)
,

C 二 ( e于
,

) = ( [ T丁pT 。 ] “ )

T ;
是正交阵 T的第 i 列向蚤

。

公式 ( 1 4 ) 就是观测值相关时的含有二次项的协方差传播公式
。
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四
、

含有二次填的协方差传播公式的应用举例

例 1 :
图 1是一个简单的变形监测控制网

,

A
、

B 为固定点
,

C点布设在可能的变形区
。

设 C : 、

C I :
分别表示 C点的第一

、

二期观测
。

为了检验 C点是否产生了变动
,

有时利用 C : 和C ,:

间的距离及其精度构成统计量进行检验 “ }
。

记 C , 和 C l :的坐标差分别为 △x 、

△y ,

则

f = 5 2 = △x Z + △y Z

由于任何相关的二个正态随机变量都可以独立化
。

因此
,

为了便于计算
、

比较
。

酝
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== l m m Z 。

且 E (△x
) = l m m ,

E (△y ) = l m m , m云
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不妨设

2 , m 盖
,

按惯用的协方差传播公式可得到 f 的方差为

而
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所以
,

按 H
.

W。挂的公式得到 f 的方差为
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按公式 ( 1 1 ) 计算得到 f 的方差为

( 2 x Z + 0 ) x l 又 1 = 16 m m

~
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(
2

2
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而根据正态随机向量的概率密度计算得到 f 的方差为

布卜 I
’

1
’ 〔△x Z + “ y ’ 一 “ `△X Z + “ ` “ ’ 〕“

工
e 一 十〔 (△x 一 1 )
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2

]
J
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例 2
:
设 y 二叶 + x

釜+ … + x 誉
, x : , X : , … , x 。

相互独立
,

且都服从标准正态分布
,

则
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由公式 ( 1 1 )计算得到

由 H

m专 =Zn

Wf of的公式计算得到

m季
, = Zn + n Z

且由统计学易知

y一 X“
(

n
)

:’ m季= Z n

由此可见
,

对于二次多项式
,

本文得到的含有二次项的协方差传播公式与真值一样
,

而

H
.

W of f 的是它的近似
。

且在变形分析中
,

在某些情况下
,

仅利用惯用的协方差传播公 式 是

不够的
,

顾及二次项是必要的
。

从文中的例子可以看到
,

当观测值的数学期望很小时
,

可能要考虑使用含有二次项的公

式
,

但视函数形式而定
,

也就是说
,

精度计算时是否使用含有二次项的公式
,

决定于函数的

形式
、

观测值数学期望及其方差的大小
。

本文在写作过程中得到了刘大杰付教授
、

陈永奇博士的热情帮助
,

表示衷心感谢
。

今 考 文 做

[ 1 〕 H
.

W o l f
,

D a s F e h l e r f o rt p f l a n z u n g s gsee t z m i t G l i e d e r n 11 O r d n u n g ,
Z FV

.

M直r z
.

1 9 6 1
。

〔 2 〕 H
.

W of f 著
,

方佩竹译
,

平差计算 (实用公式 )
,

测绘出版社
, 1 9 8 3

.

〔 3 〕 陶本藻
,

含有二次项的误差传播定律的推导
,

测绘通报
,

3
,

1 9 8 3
.

[ 4 〕 J
.

M
a r t u se w i e z ,

N e w C o n e e P t io n of D e et r m i n a t i o n o f D is P l a e e m e n st
,

F I G X V l l

I n t e r n a t i o n a l C o n g r
哪

,
S o f i a ,

B u l g a r i a , 1 9 8 3
.

V a r i a n ce 一 C o v a r ian ce P or Pa g a t ion f o r a N o n l i n ae r F u n e t ion

X “ P e名乙i a炸g

A b s t t皿 C t

T h e g e n e ar l e x P r e ss i o n o f v a r i a n e e一 e o va r ia n e e P r o Pa g a t io n f o r a n o n l i n e a r f u n e t io n

15 de r i v e d
.

B y s im P l i f y i n g i t , t h e e o r r eS P伽d i n g f o r m u l a s w i t h o r d e r 1 a n d o r d e r 11

a r e o b ta i n e d
.

T h e f o r m u l a w it h O r d e r 11 P r e` e n et d b y H
。

W o l f 15 P r

voe
d to b e a n

a p Por X im a t i o n of t h e a b o ve fo mr
u l a 。

[ K e y w o r d s ]
n o n l i n e a r , v a r ia n ce

一 。。钧 r i a n e e p or P a g a t i o n , a p p l i e a t i o n


