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基于连续小波分析的混合植被叶绿素反演

方圣辉１　乐　源１　梁　琦１

１　武汉大学遥感信息工程学院，湖北 武汉，４３００７９

摘　要：利用ＤＢ４小波函数对两个尺度４个数据集混合植被高光谱数据进行连续小波分析，分析小波系数与

叶绿素含量之间的相关性，建立模型并利用验证数据进行验证，将模型精度与植被指数经验模型进行比较，最

后进行了不同数据集之间的交叉验证。结果表明，在叶片尺度与冠层尺度上，基于连续小波分析进行混合植

被叶绿素反演，所得模型精度均高于植被指数经验模型精度；在相同尺度上，模拟与实测数据集之间有相同的

小波系数特征区域，可以用来进行叶绿素含量反演。
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　　植被叶绿素是植被进行光合作用最重要的物
质之一，准确估算植被的叶绿素含量对研究植被
的生态效应具有重要意义。目前利用高光谱数据
反演植被叶绿素主要有以下两种方法：① 经验与
半经验模型方法［１］；② 物理模型反演方法［２－３］。

植被指数经验模型通过获取某些植被指数与叶绿

素含量之间的经验关系，建立模型并反演叶绿素
含量，其优点是模型计算简单易获取，但模型适应
性有限。利用物理模型能取得较高的精度，但是
需要了解部分生理生化参数，这些参数在实际应
用时往往较难获取，同时物理模型反演时也会出
现病态反演的问题。
小波分析是一种应用广泛的信号分析工

具［４－１４］，目前已经应用在森林ＬＡＩ制图、典型植被
分类［１０］等方面。在叶绿素反演方面，Ｂｌａｃｋｂｕｒｎ
利用小波分析进行了植被生化参数反演［６－８］，宋开
山等利用小波分析进行大豆叶绿素反演并取得了

较高的精度［９］。Ｃｈｅｎｇ等利用小波分析进行了病
虫害探测［４］和叶片水分反演［７］并取得了较高的精

度。连续小波变换将原始光谱信号在连续的波段
上进行分解，分解后的系数与原始的光谱波段一
一对应，在物理意义上相较离散小波变换更加清
晰。但自然界中植被多是混合生长，针对混合植
被的小波分析模型适应性有待进一步验证。本研
究利用连续小波变换，分别在叶片与冠层两个尺

度上，利用模拟数据与武汉地区实测数据进行了
叶绿素反演实验，寻找适合用于不同尺度间混合
植被叶绿素反演的小波尺度与波段，建立反演模
型并与传统的植被指数经验模型进行了比较分

析，同时进行了交叉验证。

１　方法和实验

１．１　实验数据集
实验数据集包含两个尺度上的４个数据集，

分别是ＰＲＯＳＰＥＣＴ模拟数据集（ＰＲＯＳＰＥＣＴ）、

ＰＲＯＳＡＩＬ模拟数据集（ＰＲＯＳＡＩＬ），武汉地区实
测叶片数据集（ＷＨＬ）与冠层数据集（ＷＨＣ）。本
文中通过生成一组数目为１　０００的正态分布随机
数来模拟混合植被的理化参数，作为物理模型的
输入来生成模拟的植被光谱。部分主要输入参数
的信息如表１所示。表１中无标准差的变量表示
输入为固定值。

　　叶片实测数据采集于２０１２－０４～２０１３－０６之
间，包含银杏、香樟、桂树、海桐、法国冬青、栾树、
火棘、构树、晚樱、大叶黄杨、石楠、栀子在内的１２
种阔叶灌木或者小乔木，共１４３条光谱数据，其中
石楠叶片光谱２０条，栀子叶片光谱２３条，其余叶
片光谱均为１０条。冠层实测数据采集于２０１３
年５～７月，包含以上１２种植被共８２条光谱数据，
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表１　ＰＲＯＳＰＥＣＴ和ＳＡＩＬ模型输入参数信息表

Ｔａｂ．１　Ｓｕｍｍａｒｙ　ｏｆ　Ｉｎｐｕｔ　Ｖａｒｉａｂｌｅｓ　ｆｏｒ

ＰＲＯＳＰＥＣＴ　ａｎｄ　ＳＡＩＬ　Ｍｏｄｅｌ

输入参数 均值 标准差

ＰＲＯＳＰＥＣＴ
叶绿素含量／（μｇ·ｃｍ－２） ４５　 １０
结构参数 １．５　 ０．４

水分含量／（ｇ·ｃｍ－２） ０．０１２　 ０．００２
干物质含量／（ｇ·ｃｍ－２） ０．０１２　 ０．００２

ＳＡＩＬ
叶面积指数 ４　 １
平均叶倾角／（°） ４５　 １０
太阳天顶角／（°） ３０ －
热点参数 ０．２ －
土壤比率系数 ０．３ －
观测方位角／（°） ０ －

其中石楠冠层光谱１０条，栀子冠层１２条，其余均
为６条。采集地点是武汉大学校区以及华中农业
大学狮子山区试验田，测量植被长势均匀，所有光
谱数据均采集于晴朗天气的１０：００至１５：００之
间，叶绿素测定采用丙酮萃取法。冠层实测光谱
数据采集时选择长势均匀的植被冠层，冠层叶绿
素测量时选取上中下层的叶片各３片，测定叶绿
素后计算均值作为冠层数据集叶片叶绿素含量，
同时利用ＳｕｎＳｃａｎ冠层分析仪测定植被叶面积
指数（ＬＡＩ），冠层叶绿素含量（ＣＣＣ）通过式（１）计
算［５］，其中ＬＣＣ为叶片叶绿素含量，ＬＡＩ为叶面
积指数。

ＣＣＣ＝ＬＣＣ＊ＬＡＩ （１）

　　由于与叶绿素最相关的波段主要集中在红光
与近红外波段，因此，本文选取４００～１　０００ｎｍ波
段之间的反射率来建立模型。４个数据集均被分
为两组，其中６０％的数据用来建立模型，余下

４０％数据用来验证模型精度。

１．２　植被指数经验模型
为了验证基于连续小波变换的叶绿素反演模

型的精度，本文中同时建立起包括归一化差值植
被指数（ＮＤＶＩ）、比值植被指数（ＳＲ）、比值植被指
数７０５（ＳＲ７０５）、修 正 的 叶 绿 素 吸 收 率 指 数
（ＭＣＡＲＩ）、ＭＥＲＩＳ陆地叶绿素指数（ＭＴＣＩ）、三
角植被指数（ＴＶＩ）、优化的土壤调节植被指数
（ＯＳＡＶＩ）等在内的７种常用于植被叶绿素反演
的植被指数（表２）与叶绿素含量的经验模型。但
数据集中与叶绿素含量最相关的波段并不一定与

植被指数定义中所使用的波段完全一致，因此对
数据集中的光谱曲线，将所有波段两两组合，计算
归一化差值植被指数并与叶绿素进行相关分析，
得到与叶绿素最相关的归一化植被指数形式

ＮＤＶＩａ＿ｂ并建立模型。其中ａ、ｂ表示与叶绿素最
相关的ＮＤＶＩ对应的两个波段。

表２　本文使用的植被指数

Ｔａｂ．２　Ｓｐｅｃｔｒａｌ　Ｉｎｄｉｃｅｓ　Ｕｓｅｄ　ｉｎ　ｔｈｅ　Ｐａｐｅｒ

指数 公式

ＮＤＶＩ （Ｒ８００－Ｒ６７０）／（Ｒ８００＋Ｒ６７０）

ＳＲ　 Ｒ８００／Ｒ６７０
ＳＲ７０５ Ｒ７５０／Ｒ７０５
ＭＣＡＲＩ ［（Ｒ７００－Ｒ６７０）－０．２（Ｒ７００－Ｒ５５０）］×Ｒ７００／Ｒ６７０
ＭＴＣＩ （Ｒ７５０－Ｒ７１０）／（Ｒ７１０－Ｒ６８０）

ＴＶＩ　 ０．５［１２０（Ｒ７５０－Ｒ５５０）－２００（Ｒ６７０－Ｒ５５０）］

ＯＳＡＶＩ （Ｒ８００－Ｒ６７０）／（Ｒ８００＋Ｒ６７０＋０．１５）

１．３　连续小波变换
连续小波变换是一种广泛用于信号分析中的

线性变换。它通过小波函数将信号分解为一系列
的小波系数。通过对小波母函数进行尺度与平移
变化，产生一系列小波函数。因此，本文中的尺度
有以下两层含义：① 数据集尺度，即叶片尺度与
冠层尺度；② 小波变换的尺度即小波尺度。在给
定的小波尺度上，通过平移小波函数与光谱信号
相作用产生一个１×ｎ的小波系数矩阵（其中ｎ为
波段），在ｍ个尺度上进行小波变换就生成了ｎ×
ｍ的连续小波变换系数矩阵，这个二维矩阵一维
对应的是波长，另一维对应尺度，低尺度的小波系
数反映了光谱信号的细节吸收特性，高尺度的小
波系数对整个连续光谱曲线进行仿真。本文中连
续小波变换在２，２２，…，２８的尺度上进行，这些小
波尺度分别记为尺度１，尺度２，…，尺度８。大于

２８的尺度所表示的信息已经不具有意义［７］。使用

Ｄｂ４小波函数对４个数据集进行连续小波分析，
将小波系数与叶绿素含量进行相关分析，提取最
高的２％的相关系数平方（决定系数），对应的区
域称为小波系数特征区域。

２　实验结果与分析

２．１　不同叶绿素含量下植被光谱
图１是 ＷＨＬ 数据集中不同叶绿素含量下的

植被叶片光谱，可见叶绿素对植被光谱影响最大
的区域在波长５００～９００ｎｍ的区间内。随着叶
绿素含量的升高，植被光谱５５０ｎｍ附近的绿峰
和８００ｎｍ附近的近红外平台的反射率值逐渐降
低。相对于植被指数只能利用某些固定波段来进
行建模，小波分析则可以捕捉到光谱在一定波长
范围内曲线形状的变化［７，１２，１５］。

７９２
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图１　不同叶绿素含量下叶片光谱

Ｆｉｇ．１　Ｒｅｆｌｅｃｔａｎｃｅ　ｏｆ　Ｌｅａｆ　ｆｏｒ　Ｄｉｆｆｅｒｅｎｔ　Ｃｈｌｏｒｏｐｈｙｌｌ　Ｃｏｎｔｅｎｔｓ

２．２　叶片尺度叶绿素反演
将两个叶片数据集建模数据进行８种植被指

数的计算并进行线性回归，利用验证数据进行验
证，得到的验证模型精度如表４所示。在 ＮＤＶＩ
等植被指数中，ＳＲ７０５、ＭＴＣＩ、ＭＣＡＲＩ在两个数
据集中的精度均高于其他植被指数，经过了相关
性分析选取波段之后的 ＮＤＶＩ指数能达到较高
的精度，决定系数分别为０．９７５　４和０．７２５　０，但
在两个数据集中最高相关波段有所不同。利用

ｄｂ４小波对两个建模数据集进行连续小波变换，
将小波能量与叶绿素含量进行相关分析，得到决
定系数图（图２），获取前最高的２％的决定系数的
小波特征区域并构建模型。表３所示各数据集中

决定系数最高的前６个区域中最高决定系数所在
位置。ＷＨＣ数据集前２％的决定系数中，只有５
个小波系数区域，因此，小波特征区域比其他数据
集少一个。

表３　不同数据集的小波系数特征区域

Ｔａｂ．３　Ｗａｖｅｌｅｔ　Ｃｏｅｆｆｉｃｉｅｎｔｓ　Ｆｅａｔｕｒｅ　ｆｏｒ　Ｄｉｆｆｅｒｅｎｔ

Ｄａｔａ　Ｓｅｔｓ

ＰＲＯＳＰＥＣＴ　 ＷＨＬ ＰＲＯＳＡＩＬ　 ＷＨＣ
ＮＤＶＩａ＿ｂ （９５３，７２１） （７６７，７３０） （７８１，７４９） （７７３，７４８）

ＣＷＴ（Ａ） （３，７４４） （６，８２３） （３，７９８） （５，７９１）

ＣＷＴ（Ｂ） （７，６９０） （７，７８７） （４，７９０） （７，７９４）

ＣＷＴ（Ｃ） （４，７５３） （６，７５３） （１，７８２） （６，８２１）

ＣＷＴ（Ｄ） （２，７４３） （５，７７５） （３，７７９） （７，６９２）

ＣＷＴ（Ｅ） （１，７４３） （５，７３７） （２，７８９） （６，７５９）

ＣＷＴ（Ｆ） （１，７４３） （７，６８６） （２，７３６） －

表４　不同数据集验证模型的Ｒ２ 和ＲＭＳＥ

Ｔａｂ．４　Ｒ２　ａｎｄ　ＲＭＳＥ　ｏｆ　Ｖａｌｉｄａｔｉｏｎ　Ｍｏｄｅｌｓ　ｆｏｒ　Ｄｉｆｆｅｒｅｎｔ　Ｄａｔａ　Ｓｅｔｓ

ＬＣＣ／ＣＣＣ
ＰＲＯＳＰＥＣＴ　 ＷＨＬ ＰＲＯＳＡＩＬ　 ＷＨＣ
Ｒ２　 ＲＭＳＥ／％ Ｒ２　 ＲＭＳＥ／％ Ｒ２　 ＲＭＳＥ／％ Ｒ２　 ＲＭＳＥ／％

ＮＤＶＩ　 ０．３１１　５　 ２３．７５　 ０．１７３　２　 ２３．８２　 ０．５３５　１　 ２１．３０　 ０．４００　７　 ３２．９０
ＳＲ　 ０．３１６　８　 ２３．６８　 ０．１７７　９　 ２１．８８　 ０．５２８　９　 ２１．６３　 ０．５７６　７　 ３１．４８
ＳＲ７０５　 ０．８２８　７　 １１．８５　 ０．７６３　９　 １５．８１　 ０．５９４　６　 ２０．０４　 ０．６３０　６　 ２８．７８
ＭＣＡＲＩ　 ０．５５２　３　 １９．１４　 ０．５０５　９　 １８．７０　 ０．４１３　２　 ３１．６７　 ０．３４３　０　 ４３．６０
ＭＴＣＩ　 ０．７６０　０　 １４．０１　 ０．７５１　４　 １８．５６　 ０．５６３　４　 ２０．７２　 ０．５９８　３　 ２８．９６
ＴＶＩ　 ０．０７９　０　 ２７．４５　 ０．００８　１　 ４７．１８　 ０．０９９　３　 ４５．６８　 ０．００３　６　 ６２．８５
ＯＳＡＶＩ　 ０．０７４　８　 ２７．５１　 ０．１９７　４　 ３８．７７　 ０．２７９　１　 ４０．９４　 ０．２２９　５　 ４４．３８
ＮＤＶＩａ＿ｂ ０．９７５　４　 ４．４２　 ０．７２５　０　 ２０．８８　 ０．７６８　６　 １８．７１　 ０．６２２　８　 ３０．２１
ＣＷＴ（Ａ） ０．９８４　５　 ３．５６　 ０．７６７　８　 １８．２７　 ０．８７５　１　 １４．２８　 ０．６４２　３　 ２８．６１
ＣＷＴ（Ｂ） ０．９７８　２　 ４．２３　 ０．７５７　１　 １８．２５　 ０．８４５　８　 １５．６５　 ０．５５５　１　 ３０．７８
ＣＷＴ（Ｃ） ０．９８３　７　 ４．５８　 ０．７７４　９　 １６．７８　 ０．８６０　８　 １４．７４　 ０．５３０　６　 ３１．３８
ＣＷＴ（Ｄ） ０．９６２　６　 ６．９４　 ０．６５６　５　 ２２．４２　 ０．８５７　７　 １４．７５　 ０．５４３　７　 ３０．９５
ＣＷＴ（Ｅ） ０．９７２　７　 ５．９３　 ０．６５０　９　 ２０．６８　 ０．８２６　３　 １６．７５　 ０．５４４　２　 ３１．８９
ＣＷＴ（Ｆ） ０．９７７　９　 ５．３４　 ０．５０９　２　 ２３．６１　 ０．８０９　３　 １７．３４ － －

　　由图表可知，ＰＲＯＳＰＥＣＴ模拟叶片数据集的 最高相关区域集中在１～７尺度，６５０～９５０ｎｍ之

８９２
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间（图２（ａ）），各相关区域是离散的，而武汉叶片
实测数据集的最高相关区域则集中在５～７尺度，

６５０～９５０ｎｍ之间（图２（ｂ））。两个数据集中最
高相关小波系数模型的精度均高于最高相关

ＮＤＶＩ模型精度。除开武汉实测叶片数据集中

ＳＲ７０５模型与 ＭＴＣＩ模型之外，小波系数模型精
度均明显高于植被指数模型精度，略高于最高相
关ＮＤＶＩ模型或与其持平。

图２　不同数据集叶绿素含量与小波系数的决定系数

Ｆｉｇ．２　Ｃｏｅｆｆｉｃｉｅｎｔｓ　ｏｆ　Ｄｅｔｅｒｍｉｎａｔｉｏｎ　Ｂｅｔｗｅｅｎ　Ｗａｖｅｌｅｔ　Ｃｏｅｆｆｉｃｉｅｎｔｓ　ａｎｄ　ＬＣＣ／ＣＣＣ　ｆｏｒ　Ｄｉｆｆｅｒｅｎｔ　Ｄａｔａ　Ｓｅｔｓ

２．３　冠层尺度叶绿素反演
冠层尺度下小波系数特征区域的分布情况与

叶片尺度相似。连续小波分析中，低尺度的小波
能量反映了光谱信号的细节吸收特性，高尺度的
小波能量对整个连续光谱曲线进行仿真，而实测
数据由于各种环境因素的影响，测得的光谱数据
细节信息已经不仅仅是植被所造成的，因此，低尺
度的小波能量在反映植被叶绿的能力上有所下

降。但高尺度的小波系数仍与叶绿素呈现良好的
相关关系。
冠层尺度经验模型中，比较 ＮＤＶＩ与ＳＲ的

叶片尺度，精度均有明显提升，但ＴＶＩ模型、ＯＳ－
ＡＶＩ模型精度仍旧较低。叶片尺度中精度较高
的 ＭＣＡＲＩ在冠层尺度下精度有所下降。两个数
据集中，最高的植被指数经验模型均是ＳＲ７０５，经
过相关分析选取最高相关波段的 ＮＤＶＩ指数在
模拟数据中精度有明显的提升但在实测冠层数据

集中，精度并没有明显的提升。

ＰＲＯＳＡＩＬ数据集中与叶绿素含量最高相关
的小波系数在第３尺度，波长７９８ｎｍ处，验证模
型精度为Ｒ２＝０．８７５　１，ＲＭＳＥ＝１４．２８％，实测冠
层数据集 ＷＨＣ中最高相关小波系数在第５尺度，

波长７９１ｎｍ处，验证模型精度为Ｒ２＝０．６４２　３，

ＲＭＳＥ＝２８．６１％，且最高的决定系数均集中在第

５尺度，波长７９１ｎｍ附近，因此，其他区域的小波

系数模型相比植被指数模型精度并没有明显的提

升。

图４是各数据集的建模与验证模型，图中从
左至右依次为精度最高的植被指数经验模型，最
高相关 ＮＤＶＩａ＿ｂ模型以及最高相关小波系数模
型。实心圆表示建模数据，空心圆表示验证数据
在４个数据集中，由于各种植被指数的构建都有
其特定的反演对象与实用范围，导致各个数据集
中植被指数表现不一，相对于植被指数只能利用
某些固定波段来进行建模，小波分析则可以捕捉
到光谱在一定波长范围内曲线形状的变化，因此
基于连续小波分析的叶绿素反演精度均高于基于

植被指数的经验模型精度。

２．４　交叉验证
为了验证基于最高相关小波系数模型在不同

数据集之间的适应性，我们找到在不同数据集之
间相同的小波系数特征区域。叶片尺度的相同区
域有４个，分别是：第６尺度：７４７～７５１ｎｍ，第５
尺度：７６９～７７７ｎｍ；第７尺度：７９３～７９４ｎｍ；第６
尺度：８２１～８２９ｎｍ。冠层尺度的相同区域有１
个，在第５尺度７９３～７９４ｎｍ处。４个数据集之
间在最高２％的决定系数中，没有相同的小波系
数特征区域，将２％增大到５％时，出现一个相同
的小波系数特征区域：第６尺度，８２８～８３１ｎｍ。

在叶片尺度数据中，第６尺度，７４７～７５１ｎｍ和

９９２
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图３　不同数据集的叶绿素反演模型

Ｆｉｇ．３　Ｒ２　ａｎｄ　ＲＭＳＥ　Ｂｅｔｗｅｅｎ　Ｗａｖｅｌｅｔ　Ｃｏｅｆｆｉｃｉｅｎｔｓ　ａｎｄ　ＬＣＣ／ＣＣＣ　ｆｏｒ　Ｄｉｆｆｅｒｅｎｔ　Ｄａｔａ　Ｓｅｔｓ

图４　不同数据集之间的交叉验证

Ｆｉｇ．４　Ｃｒｏｓｓ　Ｖａｌｉｄａｔｉｏｎ　Ｂｅｔｗｅｅｎ　Ｄｉｆｆｅｒｅｎｔ　Ｄａｔａ　Ｓｅｔｓ

００３
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８２１～８２９ｎｍ中，ＰＲＯＳＰＥＣＴ建模数据集最高的
决定系数在８２５ｎｍ处，建立此处的小波系数同
叶绿素含量之间的关系模型，并利用ＰＲＯＳＰＥＣＴ
验证数据集，以及 ＷＨＬ整体数据集进行交叉验
证，图４（ａ）为验证结果。图４（ｂ）和图４（ｃ）分别为
对第５尺度和第７尺度进行交叉验证结果。冠层
尺度数据中选取小波系数则为第５尺度７９４ｎｍ
处，利 用 ＰＲＯＳＡＩＬ 建 模 数 据 集 建 立 模 型
（图４（ｄ））。图４（ｅ）和图４（ｆ）第６尺度，波长８２８
ｎｍ处两个尺度数据的交叉验证结果。注意到，
当实测数据中叶绿素含量较低时（叶片尺度小于

１０，冠层尺度小于１００），利用模拟数据建立的小
波系数模型进行反演，会出现估计值为负值的现
象，这是需要考虑的问题之一。实验结果表明，相
同尺度下，通过模拟数据集建立的小波系数模型
能够用于实测数据，适应性相比植被指数模型有
一定的提升。

３　结　语

在叶绿素含量不相同时，植被叶片尺度光谱
的变化是在一定波段范围内的全局变化，并且会
受到诸如含水量、干物质含量、植被叶片结构等诸
多因素的影响，冠层尺度下影响光谱的因素则更
多，导致叶片尺度与冠层尺度之间小波特征区域
有所不同。实测数据由于各种因素的影响，测得
的光谱数据细节信息已经不仅仅是叶绿素所造成

的，因此，低尺度的小波能量在反映植被叶绿素的
能力上有所下降，这导致了模拟数据集与实测数
据集小波特征区域的不同。相比传统的植被指数
经验模型只能利用其中部分波段，连续小波分析
通过模拟不同尺度的小波函数与植被光谱的相似

性，能够捕捉到连续光谱范围内植被光谱的变化
情况，因此，反演精度上相比较植被指数经验模型
有明显的提高。相同尺度下，通过模拟数据集建
立的小波系数模型能够用于实测数据，小波通过
模拟一定波长范围内光谱反射率与小波函数的相

似性，相比较植被指数利用了更多的信息，因此，
适应性有一定的提升。
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