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Fig. 1 Reflectance of Leaf for Different Chlorophyll Contents
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’ Tab.3 Wavelet Coefficients Feature for Different
NDVI Data Sets
, 0.9754  0.7250, PROSPECT ~ WH,  PROSAIL  WHc
. NDVI, , (953,721) (767,730) (781.,749) (773,748)
db4 CWTCA) (3,744) (6,823) (3,798) (5,791
’ CWT(B)  (7.690)  (7.787)  (4,790)  (7.794)
’ CWT(O) (4,753) (6.753) (1,782) (6,821)
« 2. 2% CWT(D)  (2,743) (5,775 (3,779  (7,692)
3 CWT(E) (1,743) (5,737) (2,789 (6,759)
° CWT(F) (1,743) (7,686)  (2,736) -
4 R? RMSE
Tab. 4 R? and RMSE of Validation Models for Different Data Sets
PROSPECT WH_. PROSAIL WHe
LCC/CCC - ;
R®  RMSE/% R’  RMSE/% R° RMSE/% R’  RMSE/%
NDVI 0.3115 23.75 0.173 2 23.82 0.5351 21. 30 0.400 7 32.90
SR 0.316 8 23.68 0.177 9 21.88 0.528 9 21.63 0.576 7 31.48
SR705 0.828 7 11. 85 0.763 9 15.81 0.594 6 20. 04 0.630 6 28.78
MCARI 0.552 3 19. 14 0.505 9 18.70 0.413 2 31.67 0.343 0 43. 60
MTCI 0.760 0 14.01 0.751 4 18. 56 0.563 4 20.72 0.598 3 28.96
TVI 0.079 0 27.45 0.008 1 47.18 0.099 3 45.68 0.003 6 62. 85
OSAVI 0.074 8 27.51 0.197 4 38.77 0.279 1 40. 94 0.229 5 44, 38
NDVI, , 0.975 4 4.42 0.7250 20. 88 0.768 6 18.71 0.622 8 30.21
CWTA) 0.984 5 3.56 0.767 8 18. 27 0.875 1 14. 28 0.642 3 28.61
CWT(B) 0.978 2 4.23 0.757 1 18. 25 0.845 8 15. 65 0.5551 30.78
CWT(O) 0.983 7 4.58 0.774 9 16. 78 0.860 8 14.74 0.530 6 31.38
CWT(D) 0.962 6 6.94 0.656 5 22.42 0.857 7 14.75 0.543 7 30. 95
CWT(E) 0.972 7 5.93 0.650 9 20. 68 0.826 3 16. 75 0.544 2 31. 89
CWT(F) 0.977 9 5.34 0.509 2 23.61 0.809 3 17. 34
,PROSPECT 1~7 ,650~950 nm
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Fig. 3 R* and RMSE Between Wavelet Coefficients and LCC/CCC for Different Data Sets
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Fig. 4 Cross Validation Between Different Data Sets
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Retrieval of Chlorophyll Content Using Continuous Wavelet Analysis
Across a Range of Vegetation Species

FANG Shenghui' LE Yuan' Liang Qi'

1 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

Abstract; Continuous wavelet transform is used for vegetation hyperspectral analysis at two scales a-
mong four data sets. The relationship between chlorophyll content and wavelet coefficients was built,
and the accuracy was compared to the vegetation index emphasis model. Cross validation was carried
out between different data sets. The results show that the accuracy of the wavelet coefficients model is
higher than the other models at both scales. Several wavelet features were suitable for chlorophyll re-
trieval from simulated and measured data sets at the same scale.

Key words: hyperspectral; continuous wavelet transform; wavelet coefficient; vegetation index
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