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光斑影响下激光点云的不确定性评价
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摘　要：利用光斑的特性确定激光点位在光斑中的不确定性，将误差熵引入到激光点位不确定性的评价中。

根据激光反射特性，确定了激光点位不确定性的概率密度函数，利用信息熵的定义推导了激光点位的信息熵，

同时，利用信息熵与误差熵的关系进行了激光点位误差熵的推导，根据误差熵关系式确定了误差熵与光斑面

积的线性关系。根据点云光斑实际面积，得到了点云误差熵及每个激光点位的平均误差熵。利用入射角与误

差熵之间的关系，分析了入射角对激光点位不确定性的影响程度，确定了扫描的最佳入射角范围。通过设置

不同扫描间隔得到的点云数据，验证了利用误差熵对点云不确定性进行评价的可行性。
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　　理论上，激光射线是沿着激光光束的中心方

向的，但实际上由于震动或系统误差的影响，激光

射线可能会偏离激光光束的中心方向，而激光束

在物体上形成的光斑便是激光点位不确定性的范

围，由文献［１］可知，激光的位置可能是光斑中的

任意位置，体现了激光点位在光斑中的不确定性。

由于信息论中的熵是信源平均不确定度的度量指

标，可以将信息熵引入到点位不确定性的度量指

标中。文献［２］利用误差熵对截断误差的不确定

性进行研究。文献［３］以线元不确定性为实例建

立了空间数据不确定性的混合熵模型，并给出了

线元不确定性的熵带分布，验证了利用熵进行空

间数据不确定性研究的可行性。文献［４］根据线

元端点随机矢量的方差协方差矩阵，将误差熵模

型扩展到面元的误差熵环模型，该模型相对于面

元误差环，无需事先设定置信水平，同时考虑了边

界线上误差分布不均匀的特点。文献［５６］分析

了光斑大小对点云角度分辨率的影响，进而确定

了光斑对点位不确定性的影响。由文献［７］分析

可知，根据激光特性，激光点位近似服从高斯分

布。利用３σ与光斑大小的关系确定点位协方差

矩阵，由于光斑大小受入射角的影响，在推导入射

角对点位协方差影响的基础上，分析了入射角对

协方差矩阵的影响。本文根据激光点位概率密度

函数，推导了激光点位的信息熵，并利用信息熵与

误差熵的关系得到激光点位误差熵模型，通过分

析激光点位误差熵公式中的变量可确定点位误差

熵即是光斑面积的线性形式。因此，通过计算光

斑面积即可确定点云误差熵，利用误差熵便可实

现对点云不确定性的评价。

１　激光点位概率密度函数

１．１　光斑大小

光斑大小由激光波束宽度决定，是激光点位

不确定性的范围。关于光斑大小的计算方法有很

多种，文献［８９］给出了两种光斑大小计算公式。

文献［９］同时考虑了发射孔径犇０、距离犛及犛 对

应的光斑直径犇 的影响，对两种公式进行组合来

计算光斑大小，其表达式为：

犇＝

狑２０＋犮
２（犛－犚０）槡

２

２（犛－２犚０）·ｔａｎ（
γ
２
·１０－６）·１０３＋犇

烅

烄

烆
０

（１）
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式中，犚０ 为激光束的束腰半径；狑０ 为犚０ 处光斑

直径；犮为常数；γ为光束发散角。

式（１）同时顾及了发射孔径犇０ 及犛处光斑

直径犇 的影响，能够较为准确地对光斑大小进行

计算，本文将依据式（１）计算光斑大小。

入射角为０时，光斑大小可直接根据式（１）计

算。文献［９］给出了光斑长轴长度随入射角变化

的公式，如式（２）所示。而光斑短轴不随入射角的

改变而改变。

犇＝
犛β
ｃｏｓ犪

（２）

式中，β为激光波束宽度；犛为扫描距离；犪为入射

角。

１．２　激光点位概率密度函数

脉冲中的能量近似服从对称的高斯分布（正

态分布），从而有基于高斯分布的光斑中激光点位

概率密度函数，如式（３）所示：

犘犫（α，θ）＝

１

２π槡犆
ｅｘｐ －

１

２
狉Ｔ犆－１｛ ｝狉 ，α２＋θ２ ＜δ

２

４

０，α
２
＋θ

２
＞
δ
２

烅

烄

烆 ４

（３）

式中，犆＝
σ
２
α σαθ

σαθ σ
２［ ］
θ

；狉＝［］α
θ
；α、θ表示水平、垂直

方向；δ表示光斑直径。

由 于 水 平 或 垂 直 方 向 的 点 位 落 在

－３σ， ３（ ）σ 区间内的概率达到了９９．７％，所以

可得到水平或垂直方向的点位中误差，如式（４）所

示：

σα ＝σθ＝
１

６
犇直径 （４）

　　在考虑入射角犪影响的情况下，有协方差矩

阵如式（５）所示：

犆＝

犇２直径

３６ｃｏｓ２犪
０

０
１

３６
犇２

熿

燀

燄

燅
直径

（５）

　　根据式（３）、（５）构建基于高斯分布的激光点

位不确定性的概率密度函数模型。

２　基于误差熵的点云不确定性分析

２．１　光斑中点位不确定性误差熵模型

根据信息熵的定义可以得到激光点位在光斑

中信息熵的统一表达式，如式（６）所示：

犘′＝－
１

２π槡犆
ｅｘｐ －

１

２
狉Ｔ犆－１｛ ｝狉ｌｎ

　
１

２π槡犆
ｅｘｐ －

１

２
狉Ｔ犆－１｛ ｝［ ］狉 ｄαｄθ

（６）

　　将式（６）化为标准误差椭圆的形式为：

犘′＝－
１

２πλ１λ２
ｅｘｐ －

１

２

狌２

λ
２
１

＋
狏２

λ（ ）｛ ｝２
２

ｌｎ

　
１

２πλ１λ２
ｅｘｐ －

１

２

狌２

λ
２
１

＋
狏２

λ（ ）｛ ｝［ ］２
２

ｄ狌ｄ狏

（７）

式中，λ１，λ２ 为误差椭圆半轴长。

将椭圆形式化为标准误差圆形式：

犘′＝－ｌｎ
１

２πλ１λ（ ）
２

１

π
ｅｘｐ － 珚狓

２
＋珔狔（ ）｛ ｝２ ｄ珚狓ｄ珔狔

＋
１

π
ｅｘｐ － 珚狓

２
＋珔狔（ ）｛ ｝２ · 珚狓

２
＋珔狔（ ）２ ｄ珚狓ｄ珔狔 （８）

　　利用极坐标进行积分可得：

犘′＝－ｌｎ
１

２πλ１λ（ ）
２

１－ｅ
－
１
２犽［ ］
２

＋
１

π∫
２π

０
ｄθ∫

犽

槡２

０

　ｅ
－狉
２

狉３ｄ狉＝－ｌｎ
１

２πλ１λ（ ）
２

１－ｅ
－
１
２犽［ ］
２

＋１－

　
犽２

２
·ｅ－

犽
２

２ －ｅ
－
犽
２

２ （９）

式中，犽为误差椭圆缩放系数。

当犽＝３时，根据式（９），有：

犘′＝１＋ｌｎ
π犇

２

１８ｃｏｓ（ ）犪 （１０）

式中，犪为入射角；犇 为入射角为０时的光斑直

径。

依据信息熵可以推导激光点位误差熵，如式

（１１）所示：

Δ＝
１

２
ｅ犘′ ≈πλ１λ２ｅ＝

ｅπ犇
２

３６ｃｏｓ犪
（１１）

式（１１）是激光点位误差熵的表达式。

根据式（１１）的误差熵便可计算出每个激光点

位在光斑中的不确定性大小，从而实现了对点位

不确定性的量化。

２．２　点云误差熵模型

由式（１１）可知，误差熵只与误差椭圆的长半

轴λ１ 和短半轴λ２ 有关，而λ１、λ２ 是光斑长轴及短

轴的１／６，则将式（１１）演变为误差熵与光斑大小

的关系式，如式（１２）所示：

Δ≈π·
１

３
犪·
１

３
犫·ｅ＝

ｅ

９
犛光斑 （１２）

式中，犪为光斑长半轴；犫为光斑短半轴。

　　假设所有光斑的总面积为犛总，总激光点位数

为狀个，则根据光斑总面积可得到点云总误差熵

及平均每个激光点位的误差熵为：

Δ犘 ＝
ｅ

９
·犛总，珚Δ犘 ＝

ｅ

９狀
·犛总 （１３）

８０１
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３　点云不确定性分析

３．１　入射角对激光点位不确定性的影响

根据式（１）计算距离及入射角对点位不确定

性的影响，结果如图１所示。

图１　不同距离入射角对点位不确定性的影响

Ｆｉｇ．１　ＩｎｆｌｕｅｎｃｅｏｆＩｎｃｉｄｅｎｔＡｎｇｌｅｏｎｔｈｅＰｏｓｉｔｉｏｎａｌ

ＵｎｃｅｒｔａｉｎｔｙａｔＤｉｆｆｅｒｅｎｔＤｉｓｔａｎｃｅｓ

由图１可知，随着入射角的增加，激光点位误

差熵呈现增大的趋势，误差熵受入射角变化趋势

影响较大，而受距离的影响较小，即入射角对激光

点位不确定性的影响大于距离对激光点位不确定

性的影响。根据不同距离处的误差熵可知，误差

熵随着距离的增加呈现递增的趋势，距离越大激

光点位不确定性越大。由入射角对激光点位误差

熵的影响可知，在入射角小于９°时，可以不考虑

其对点位不确定性的影响。

３．２　实例分析

采用ＲＩＥＧＬＶＺ４００三维激光扫描仪正对

着墙体进行扫描，扫描间隔分别设置为５ｍｍ、８

ｍｍ。由式（１）、（２）计算每个点光斑大小，结果如

图２、３所示。

图２　扫描间隔为５ｍｍ的光斑

Ｆｉｇ．２　ＳｐｏｔｏｆＳｃａｎＩｎｔｅｒｖａｌ５ｍｍ

由图３可知，相邻光斑无交集。对于图２相

邻光斑满足相交情况，在考虑入射角影响的情况

图３　扫描间隔为８ｍｍ的光斑

Ｆｉｇ．３　ＳｐｏｔｏｆＳｃａｎＩｎｔｅｒｖａｌ８ｍｍ

下，利用式（１０）、（１１）计算不同扫描间隔下每个点

对应的信息熵及误差熵，结果如表１所示。

表１　激光点位熵

Ｔａｂ．１　ＬａｓｅｒＰｏｉｎｔｓＥｎｔｒｏｐｙ

１ ２ … ６４

扫描间隔５ｍｍ
狆′ ３．０４３ ３．０４３ … ３．０４３

Δ狆′ １０．４８２ １０．４８１ … １０．４８

扫描间隔８ｍｍ
狆′ ３．０４３ ３．０４３ … ３．０４３

Δ狆′ １０．４８３ １０．４８３ … １０．４８１

　　由表１可知，扫描间隔为５ｍｍ与扫描间隔

为８ｍｍ的信息熵相差最大都是０．０００１８，误差

熵相差最大的是０．００３１。因此，在相同距离扫描

同一个目标时，扫描间隔对单个激光点位的信息

熵和误差熵影响很小。根据每个光斑误差熵的计

算结果，在不考虑光斑相交的情况下，利用式（１３）

计算总误差熵及平均每个激光点位的误差熵。在

扫描间隔分别为５ｍｍ、８ｍｍ时，总误差熵分别

为６７０．７７０６、６７０．７９１４，平均误差熵分别为

１０．４８０８、１０．４８１１。这说明不同扫描间隔的总

误差熵和平均误差熵几乎相同，即由光斑造成的

激光点云不确定性相同。但由图２可知，光斑与

光斑之间存在交集，即存在重复面积，而由误差熵

与光斑面积的关系式（１２）可知，误差熵反应的正

是光斑面积表达形式。所以，如果不考虑扫描间

隔对光斑之间相交的影响，势必会造成误差熵的

重合，使得计算得到的点云数据不确定、不真实。

为了真实反应点云数据的不确定性，利用误

差熵与光斑面积的关系得到真实的误差熵。在扫

描间隔分别为５ｍｍ、８ｍｍ时，总误差熵分别为

３５６．８５０６、６７０．７９１４。平 均 误 差 熵 分 别 为

５．５７５８、１０．４８１１。这说明在考虑了光斑相交的

情况下，５ｍｍ扫描间隔的误差熵要小于８ｍｍ扫

描间隔的误差熵。虽然每个激光点位的不确定性

相同，但扫描间隔为５ｍｍ的点云不确定性更小，

整个点云的误差区间更小。

９０１
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４　结　语

由于信息熵反应的是信息量的大小，本文将

信息熵引入到光斑影响下点云不确定性的评价

中，利用激光点位概率密度函数推导了激光点位

在光斑中的信息熵，依据误差熵与光斑面积的关

系得到了点云实际的误差熵，从而对点云实际的

不确定性情况进行了评价。

１）依据误差熵与光斑面积的关系，得到同一

目标两次不同扫描间隔的点云误差熵，光斑相交

的面积越大，其误差熵越小，单个激光点位的误差

熵也就越小，所反应的点云不确定性也就越小。

２）激光点位误差熵能够在一定程度上反映

激光点位在光斑中的不确定性，整个点云的误差

熵考虑了相邻激光光斑重合情况，是一种平均意

义上的度量指标。采用误差熵可以描述点云实际

的误差区间情况。

３）由于入射角的影响，光斑投影到目标上的

大小呈现不平衡的特点，激光点位在光斑中的分

布也就呈现不平衡的特点。利用误差熵对点云的

不确定性进行研究可以反映点云误差区间的实际

情况，具有一定的价值。
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