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Abstract: On the basis of the spatial characteristics of GIS, an alternative viewpoint for def+

ning and discovering spatial outliers from GIS is proposed, in which the spatial location of a

spatial outlier is significantly far from other spatial objects in its neighborhood determined by

nomspatial attribute. Then the SOD algorithm is proposed and analyzed in detail. Expert+

mental results on synthetic datasets demonstrate that the proposed approach can effectively

and efficiently identify spatial outliers in large spatial data sets. Finally, the authors give the

general procedure to mine the spatial outliers from GIS database.
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