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General Review on Remote Sensing-Based Biomass Estimation
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Abstract; To further confirm the role that forest ecological system plays on global warming
and global carbon cycle, quantitative study on forest biomass of large scale areas is needed.
Traditional approaches based on field measurement are highly accurate, while they are only
fit for small place and difficult to implement in large place. With the breakthrough progress
in quantitatively obtaining forest parameters such as height of forest, canopy density, etc. ,
remote sensing has become the primary source for biomass estimation. We review research
progress of remote sensing-based biomass estimation from single- and multi-sensor data, and
discuss existing issues influencing biomass estimation.

Key words: biomass; remote sensing; estimation
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