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摘　要：在介绍模糊推理神经网络ＦＮＮＬＭ训练算法及网络参数的确定方法的基础上，以东江大坝１２个测

点的水平位移预报为例，说明了模糊神经网络模型具有训练时间短、预报精度高的优势。

关键词：模糊神经网络；大坝变形；预报模型

中图法分类号：Ｐ２０７；Ｐ２５８

　　大坝变形预报通常采用统计模型或神经网络

模型［１］。本文介绍了大坝变形预报的模糊神经网

络模型，并以东江大坝变形预报为例，说明模糊神

经网络模型在大坝变形预报中的优越性。

１　模糊推理神经网络结构

模糊推理神经网络以下列模糊规则为基础：

犚１：Ｉｆ狓１ｉｓμ
１
１，…，狓犻ｉｓμ

１
犻，…，狓狀ｉｓμ

１
狀ｔｈｅｎ狔ｉｓ狔１

…

犚犿：Ｉｆ狓１ｉｓμ
犿
１，…，狓犻ｉｓμ

犿
犻，…，狓狀ｉｓμ

犿
狀ｔｈｅｎ狔ｉｓ狔犿

由此设计出如图１所示的多输入、多输出（ＭＩ

ＭＯ）结构的模糊推理神经网络
［２］。网络结构共

分五层：第一层是输入层，各个节点直接与输入向

量的各分量狓犻 连接；第五层是输出层，每个节点

代表一个输出量；第二层和第四层的每个节点均

代表一个模糊值，每个节点的输出为对应模糊值

的隶属度；第三层的每个节点代表一条模糊规则，

该层的所有节点组成一个模糊规则库；第二层节

点与第三层节点的连接定义了模糊规则的“条

件”；第三层节点与第四层节点的连接定义了模糊

规则的“结论”。对于每个规则节点，最多只能和

每个输入、输出节点的一个模糊值相连接。

模糊推理神经网络的一个重要性质是具有万

能逼近能力。

图１　基于 Ｍａｍｄａｎｉ模型的ＦＮＮ结构

Ｆｉｇ．１　ＦＮＮＳｔｒｕｃｔｕｒｅＢａｓｅｄｏｎＭａｍｄａｎｉ

２　犉犖犖犔犕算法

２．１　犉犖犖的正向计算

结构如图１的ＦＮＮ各层正向计算如下。

第一层起着将输入值狓＝［狓１，狓２，…，狓狀］
Ｔ 传

送到下一层的作用。该层的节点数犖１＝狀。

第二层的作用是计算各输入分量属于各语言

变量模糊集合的隶属度函数。隶属度函数可采用

高斯函数（式（１））及ＰＮ函数（式（２））等来计算。

通过调整犪犻犼和犫犻犼，可以改变隶属度函数的位置和

形状。该层的节点总数犖２ ＝∑
狀

犻＝１

犿犻，犿犻是狓犻的

模糊分割数。

犳犻犼 ＝ｅｘｐ －
１

２

狌犻－犪犻犼
犫犻（ ）
犼

［ ］
２

（１）
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犳犻犼 ＝犪犻犼－
２犪犻犼

１＋ｅｘｐ（犫犻犼狌犻）
∈ ［－犪犻犼，＋犪犻犼］　（２）

　　第三层用来匹配模糊规则前件，根据应用领

域的不同，可采用 ｍｉｎ、ｍａｘ、ｓｕｍ、ｐｒｏｄ或ｐｒｏｂｏｒ

等操作计算出每条规则的适用度。在变形预报

ＦＮＮ模型中，采用 ｍｉｎ或 ｍａｘ操作会抛弃大量

的有用信息，使大部分待调参数在迭代过程中得

不到调整，从而使算法效率低，映射精度难以提

高；ｐｒｏｄ操作导致大部分第三层节点输出为０，

ｐｒｏｂｏｒ方法导致算法复杂化且效率低，均不宜采

用。因此，采用ｓｕｍ 操作进行规则适用度的计

算。此外，该层的节点总数为 犖３ ＝∏
狀

犻＝１

犿犻。随

着输入变量的增多，模糊规则数呈指数增长，众多

的模糊规则严重影响网络收敛的速度，网络庞大

训练就困难，这便是模糊规则组合爆炸问题。解

决的方法有：减少模糊分割数；网络分解再组合；

删除无关规则［１］。

第四层的节点数与第三层相同，即犖４＝犖３，

它所实现的是归一化计算，如式（３）所示：

珔犪犼 ＝犪犼／∑
犿

犼＝１

犪犼，犼＝１，２，…，犿 （３）

　　第五层是输出层，也叫解模糊化层，它的作用

是应用ｓｕｍｐｒｏｄｕｃｔ模糊推理和解模糊化方法实现

清晰化计算输出。本文采用重心法，如式（４）所示：

犳＝∑
犿

犼＝１

狑犼狌犼 （４）

２．２　犉犖犖犔犕学习算法

ＦＮＮ目前的学习算法有梯度下降算法、遗传

算法、混合学习算法、ＴＰＨ 算法、移动小论域法

等。由于各个输入之间存在潜在相关性及每个输

入序列前后存在潜在自相关性，极可能使得基于

各输入建立的 Ｈｅｓｓｉａｎ矩阵为病态矩阵。因此，

将ＬＭ算法引入ＦＮＮ，从而形成了ＦＮＮＬＭ 学

习算法。

ＦＮＮＬＭ算法的搜索方向犱犽 由下式确定：

（犑（狓犽）
Ｔ犑（狓犽）＋λ犽犐）犱犽 ＝－犑（狓犽）犲（狓犽）（５）

迭代公式为：

狓犽＋１ ＝狓犽－［犑（狓犽）
Ｔ犑（狓犽）＋λ犽犐］

－１·

［犑（狓犽）
Ｔ犲（狓犽）］ （６）

式中，犲（狓犽）为网络输出的误差向量；犑（狓犽）是Ｊａ

ｃｏｂｉａｎ矩阵；犎＝犑（狓犽）
Ｔ犑（狓犽）为 Ｈｅｓｓｉａｎ矩阵。

当犎 秩亏或病态时，增大其主对角线元素，其增

大量λ犽（λ犽≥０）称为阻尼因子。犎 矩阵对任何正

数λ犽 总具有对称正定的性质。λ犽＝０时，犱犽 的算

法同高斯牛顿法；λ犽→∞时，犱犽→０，转向目标函

数的负梯度方向，变成最速下降法。这意味着足

够大的λ犽，条件犲（狓犽＋犱犽）＜犲（狓犽）恒成立
［３］。

引进步长因子η（犽），则式（６）可写为：

狓犽＋１ ＝狓犽－η（犽）［犑（狓犽）
Ｔ犑（狓犽）＋

λ犽犐］
－１［犑（狓犽）

Ｔ犲（狓犽）］ （７）

式中，λ犽 和η（犽）的确定很重要，直接影响网络学

习的收敛速度、迭代振荡和预报精度。它们的迭

代算法较多，参见文献［１］。

３　网络参数的确定

３．１　输入输出的确定

建立大坝变形分析与预报模型主要有两个途

径［４］：① 以环境量（如库水位、气温等）作为自变

量，将效应量（变形值）作为因变量，建立起效应量

和环境量之间的依赖关系；② 根据效应量自身变

化规律，而不涉及其他环境量，建立起效应量序列

前后之间的自依赖关系。

本文采用环境量模型，由于环境量对大坝变

形影响的滞后性，温度因子取位移观测前犲至犳

天的坝址气温日均值，６对犲犳 值为：１１０、１１

２０、２１３５、３６５０、５１７０、７１９０；水压分量取坝前

水深犺的犼次幂，犼取１～３；时效因子取ｌｎ（狋）和

狋，其中狋＝（观测日序－基准日序）／１００
［５］。

组织好数据后，将样本数据分为三个部分［４］：

首先把某一日期后的样本数据作为预报样本，数

量约占总样本的２５％。然后再从剩余的样本中

均匀抽取２５％作为检测样本，剩下５０％作为训练

样本。检测样本用于在训练过程中检测网络的学

习效果，得到样本检测误差，判断网络收敛标准。

训练样本用于网络训练，以调整网络的隶属函数

参数和权阈值。

３．２　隶属度函数的确定

常用的隶属度函数有高斯函数、三角形函数、

梯形函数等。由于输入值较大时（如库水位的三

次方２７４４０００），把隶属度函数的输出压缩到［０，

１］，会产生较大变形，尽管输入值变化剧烈，但隶

属度值变化却不敏感，这样会导致网络映射能力

降低，为此可采用ＰＮ函数
［１］。

虽然ＦＮＮ具有自适应调整参数能力，但隶

属度函数参数宜在训练前确定，应使图形看上去

符合常规，如图２所示。隶属度函数的参数只要

初值选择合理，一般网络训练对它的调整幅度不

会太大，这对加快网络收敛速度有利。

３．３　网络训练终止标准参数的确定

ＦＮＮ的学习能力很强，可以高精度地逼近训

９８５
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图２　温度因子的隶属度函数

Ｆｉｇ．２　ＭｅｍｂｅｒｓｈｉｐＦｕｎｃｔｉｏｎｏｆＴｅｍｐｅｒａｔｕｒｅＦａｃｔｏｒ

练样本，但并不是训练误差越小，网络泛化能力就

越强，应避免过度拟合。将样本分为三部分的目

的在于网络训练过程中要对检测样本进行检测，

若达到预定误差标准的要求，便可终止训练，这样

可避免网络训练的盲目性。预定的误差标准可根

据大坝安全监测的实际需要来确定。

由于预报样本在实践中是未知的，把包含预

报样本均方根误差在内的综合均方根误差最小作

为网络训练终止标准是不现实的。但训练样本和

检测样本的均方根误差是可计算的，可用来作为

网络训练终止的标准。为了避免给定的终止训练

标准过于“苛刻”，应设置训练最大次数标准，使网

络即便是在找不到“答案”的情况下也终止训练。

　　图３说明了训练次数盲目增加并不能无止境

地降低均方根误差，训练３００次时就已经实现了

值为０．５１的检测样本最小均方根误差。

图３　检测样本的均方根误差与训练次数的关系

Ｆｉｇ．３　ＲｅｌａｔｉｏｎｓｈｉｐｏｆＳｔａｎｄａｒｄＤｅｖｉａｔｉｏｎｏｆ

ＴｅｓｔＳａｍｐｌｅａｎｄＴｒａｉｎｉｎｇＴｉｍｅｓ

４　大坝变形预报实例

根据收集整理的东江大坝安全监测的位移、

气温、库水位等资料，以１２个坝体垂线观测点的

径切向位移序列为预报对象，共有时间范围从

１９９９年１月至２００３年１２月期间２４５个周期的

样本数据，在此基础上分别建立了统计模型和

ＦＮＮ模型，其预报精度对比情况见表１。

表１　统计模型与ＦＮＮ模型预报精度对比表

Ｔａｂ．１　ＰｒｅｄｉｃｔＰｒｅｃｉｓｉｏｎＣｏｎｔｒａｓｔｆｏｒＳｔａｔｉｓｔｉｃＭｏｄｅｌａｎｄＦＮＮＭｏｄｅｌ

测点名
统计模型

ＭＳＥ ＭＡＥ

ＦＮＮ模型

ＭＳＥ ＭＡＥ 犖 λ／×１０－５ η

Ｌ１Ｈ２９１Ｒ １．１０１７ ０．６７６８ ０．７７１７ ０．５５７２ ５０ ４．５ ０．２０

Ｌ３Ｈ２９１Ｒ １．２７２５ ０．９１９０ １．０７４５ ０．７２０１ ５０ ４．５ ０．２０

Ｌ５Ｈ２９１Ｒ ２．５１７０ ２．０６２０ １．８２６０ １．１４７３ ５０ ４．５ ０．２０

Ｌ７Ｈ２９１Ｒ １．５３７３ １．００００ １．２０４３ ０．８９４３ ５０ ４．５ ０．３０

Ｌ９Ｈ２９１Ｒ ０．７２１７ ０．５０３９ ０．５７５３ ０．４５６９ ５０ ４．５ ０．２２

Ｌ３Ｈ２９１Ｌ ０．４２５５ ０．３３１４ ０．３０８１ ０．２５７０ ５０ ４．５ ０．２０

Ｌ７Ｈ２９１Ｌ ０．２９４１ ０．２３３７ ０．２７５９ ０．１９７５ １６ ４．５ ０．２０

Ｌ３Ｈ２０５Ｒ ０．５８５０ ０．４９３８ ０．４７６７ ０．３６２８ ２８ ４．５ ０．１０

Ｌ５Ｈ２０５Ｒ １．３５５７ １．２４９５ １．２７５４ １．０２６１ ５０ ４．５ ０．２０

Ｌ７Ｈ２０５Ｒ ０．４８１４ ０．３８４０ ０．４４８２ ０．３０４８ １５ ４．５ ０．１５

Ｌ３Ｈ２０５Ｌ ０．５８８２ ０．４７８６ ０．５１１１ ０．４０９１ ９ ４．５ ０．２０

Ｌ７Ｈ２０５Ｌ ０．３８５４ ０．３２４５ ０．３８１４ ０．２７８３ １９ ４．５ ０．１５

　　　　　　注：ＭＳＥ为均方根误差；ＭＡＥ为平均绝对误差；犖 为训练次数；λ为阻尼因子；η为步长因子。

　　由表１可知，在预报精度上，ＦＮＮ预报模型

的 ＭＳＥ和 ＭＡＥ都比统计模型的相应误差要小；

在迭代次数上，均未超过５０次，表明训练速度很

快。

位移预报值与观测值对比情况和预报误差以

Ｌ７Ｈ２０５Ｌ测点（如图４、图５）为例说明之，其余测

点相同。图４显示，Ｌ７Ｈ２０５Ｌ测点位移预报值与

观测值在６０个观测周期中基本吻合；图５显示，

９３％的预报误差在±０．５ｍｍ 范围内，表明该

ＦＮＮ变形预报模型具有较高的预报精度。

图４　Ｌ７Ｈ２０５Ｌ测点位移预报值与观测值对比

Ｆｉｇ．４　ＣｏｍｐａｒｉｓｏｎＢｅｔｗｅｅｎＯｂｓｅｖａｔｉｏｎｓａｎｄ

ＰｒｅｄｉｃｔＶａｌｕｅｓｏｎＰｏｉｎｔＬ７Ｈ２０５Ｌ

０９５
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图５　Ｌ７Ｈ２０５Ｌ测点位移预报误差
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５　结　语

１）人工神经网络模拟了人脑的硬件，模糊系

统模拟了人脑的软件（思维），由两者结合产生的

ＦＮＮ，同时具有神经网络的低层次的学习、计算

能力和模糊系统的高层次的推理、决策能力，成为

了信息处理和知识挖掘的新工具。

２）东江大坝的变形预报实例充分说明了本

文采用的ＦＮＮ变形预报模型具有训练时间短、

预报精度高的特点，相对于其他变形预报模型具

有一定的优势。可在大坝监测实践中进行变形预

报、异常报警，这对大坝安全运行和管理具有重要

意义。
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