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摘　要：利用ＬａｎｄｓａｔＥＴＭ＋遥感数据，提出了一种基于ＣＡＲＴ集成学习的ＩＳＰ遥感亚像元估算方法，将

Ｂｏｏｓｔｉｎｇ重采样技术引入ＣＡＲＴ分析中，用于提高ＩＳＰ估算的精度。实验结果表明，该方法的ＩＳＰ估算性能

优于传统的单一ＣＡＲＴ学习算法，从ＥＴＭ＋影像中估算的ＩＳＰ值与真实值之间的相关系数达到０．９１，平均偏

差为１１．１６％。
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　　不透水层是城市地区的重要特征，被定义为

诸如屋顶、沥青、水泥道路以及停车场等具有不透

水性的地表面。作为城市环境的关键指数，不透

水层百分比（ｉｍｐｅｒｖｉｏｕｓｓｕｒｆａｃｅｓｐｅｒｃｅｎｔ，ＩＳＰ）

广泛应用于城市水文过程模拟、水质面源污染以

及城市专题制图等研究中［１，２］。

近年来，基于统计模型和机器学习的ＩＳＰ亚

像元遥感估算方法相继被提出，如多元回归法［３］、

人工神经网络方法［４］、决策树方法［５，６］、光谱混合

模型［７］等。其中，决策树方法通过一系列树型结

构的决策规则来建立ＩＳＰ预测模型，由于决策树

在连续变量回归问题中具有非线性学习能力，且

实现简单，运算效率高，该方法在美国地质调查局

（ＵＳＧＳ）的地学分析和监测计划（ＧＡＭ）中得到

了成功应用和推广，获取的不透水层数据已加入

美国国家土地覆盖数据库［５，６］。然而，决策树是

一种弱学习算法［８］，受其学习能力的限制，这种

ＩＳＰ估算方法对数据噪声和训练样本误差比较敏

感，在大量噪声存在的情况下将显著降低预测模

型的估算精度；另外，对不均衡样本的欠学习也限

制了其精度的进一步提高。研究表明，该方法在

低ＩＳＰ样本中（小于２０％）的估算性能并不理

想［５，６］。针对上述问题，本文在基于ＣＡＲＴ分析

的ＩＳＰ估算方法中，引入目前在机器学习领域广

泛采用的Ｂｏｏｓｔｉｎｇ技术进行集成学习，以期达到

改善ＩＳＰ估算性能的目的。

１　犆犃犚犜分析与犅狅狅狊狋犻狀犵技术

分类与回归树分析（ｃｌａｓｓｉｆｉｃａｔｉｏｎａｎｄｒｅ

ｇｒｅｓｓｉｏｎｔｒｅｅ，ＣＡＲＴ）是一种通用的决策树构建

算法，它可以实例化为各种不同的决策树，当因变

量或目标变量为离散的分类类别值时称为分类

树，而为连续值时则称为回归树［９］。ＣＡＲＴ继承

了一般决策树具备的所有优点，既可以用于分类

研究，又能够进行连续变量的预测和回归，因此，

在遥感应用领域表现出了巨大的优势，目前多用

于遥 感 分 类 研 究，并 取 得 了 不 错 的 分 类 效

果［１０，１１］。

Ｂｏｏｓｔｉｎｇ技术是一种在机器学习领域发展起

来的重采样技术，其目的是通过某种弱学习算法

循环产生数个简单的、精度比随机猜测略好的弱

规则，再将这些规则进行集成，以提高给定的学习

算法的分类精度和预测性能［１２］。决策树和神经

网络均为弱学习算法，样本训练集的较小波动都

将导致它们产生的预测函数发生较大变化。各种
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仿真数据的研究表明，在决策树方法中采用

Ｂｏｏｓｔｉｎｇ技术能够显著提高决策树的学习能

力［８］。

ＡｄａＢｏｏｓｔ（ａｄａｐｔｉｖｅｂｏｏｓｔｉｎｇ）算法是当前最

流行的一种Ｂｏｏｓｔｉｎｇ技术
［１２］。该算法的主要思

想是给定一弱学习算法和一训练样本集 犇＝

｛（狓１，狔１），…，（狓狀，狔狀）｝，这里狓犻 为一向量，狔犻 对

于分类问题为一类别标志，对于回归问题为一数

值。初始化时，对每一个训练样本赋相等的权重

１／狀，然后用该学习算法对训练集训练犽ｍａｘ轮，每

次训练后，对训练失败的训练赋以较大的权重，也

就是让学习算法能够聚焦于那些较困难的样本

上，在后续的学习中集中对它们进行学习，从而得

到一个预测函数序列（犺１，…，犺犽，…，犺犽
ｍａｘ
），其中

犺犽 也有一定的权重，预测效果好的预测函数权重

较大，反之较小。最终的预测函数 犎（狓）对分类

问题采用有权重的投票方式，回归问题则采用加

权平均的方法对新数据进行判别，即

犎（狓）＝∑

犽
ｍａｘ

犽＝１

α犽犺犽（狓） （１）

其中，犺犽 为弱学习算法每次迭代的预测函数；α犽

为预测函数权重。

在本文ＩＳＰ估算中，将ＣＡＲＴ作为弱学习算

法，尝试采用ＡｄａＢｏｏｓｔ算法进行集成学习，以提

高那些突出值样本的学习能力，并降低ＣＡＲＴ算

法对数据噪声和训练样本误差的敏感性，最终达

到改善ＩＳＰ的整体估算性能的目的。为方便起

见，文中 ＣＡＲＴ 集成学习算法均指这种基于

Ｂｏｏｓｔｉｎｇ技术的集成学习，而把未经重采样技术

的ＣＡＲＴ算法称为单一ＣＡＲＴ算法。

２　实验结果与分析

在基于决策树的ＩＳＰ估算方法中，首先利用

高分辨率的航空影像获取ＩＳＰ估算的训练数据和

测试数据，通过决策树算法进行学习并建立回归

预测模型，在此基础上，利用中分辨率的遥感数据

进行大面积的不透水层百分比估算和制图。该方

法的主要步骤包括：① 获取ＩＳＰ训练数据和测试

数据；② 建立ＩＳＰ预测模型；③ 不透水层制图和

精度评估。该方法技术流程如图１所示。

２．１　实验数据与预处理

本文选择上海浦东新区作为实验区，实验区

位于北纬３０°０８′２０″至３１°２３′２２″，东经１２１°２７′１８″

至１２１°４８′４３″间。该地区地形平坦，主要地物类

型有商业用地、居民地、工业用地、道路、城市绿

图１　基于ＣＡＲＴ集成学习的ＩＳＰ估算方法流程图

Ｆｉｇ．１　ＦｌｏｗｃｈａｒｔｏｆＥｓｔｉｍａｔｉｎｇＵｒｂａｎＩｍｐｅｒｖｉｏｕｓ

ＳｕｒｆａｃｅＰｅｒｃｅｎｔ

地、农田、水体和少量滩涂等。实验所用的中分辨

率遥感数据为２００１年７月３１日采集的Ｌａｎｄｓａｔ

ＴＭ／ＥＴＭ＋影像，全景图像质量较好，无云和条

带影响。另外，选取小块区域的ＩＫＯＮＯＳ影像用

于获取不透水层百分比估算的训练和测试数据，

其获取时间为２００１年６月，该ＩＫＯＮＯＳ影像包

括１ｍ分辨率的全色波段和４ｍ分辨率的多光

谱数据（蓝、绿、红和近红外４个波段）。上述ＴＭ

影像和ＩＫＯＮＯＳ影像经辐射校正预处理后，以

１∶１万地形图为基准，选择一定数量的控制点，采

用二次多项式和最近邻重采样方法对原始影像进

行几何纠正和配准（误差控制在０．５个像元内），

纠正后的遥感影像具有 ＷＧＳ８４ＵＴＭ 投影坐标

系，其中 ＴＭ 影像的空间分辨率为３０ｍ，ＩＫＯ

ＮＯＳ影像为１ｍ。

２．２　犐犛犘训练数据的获取

ＩＳＰ训练数据的获取是本文估算方法的关键

步骤，直接关系到ＩＳＰ预测模型的质量。在同期

１∶１万地形图和目视解译的基础上，利用ＣＡＲＴ

集成学习算法对ＩＫＯＮＯＳ影像进行监督分类，共

提取出７类土地利用／覆盖地物类型，包括不透水

层（主要由建筑物、道路等组成）、裸地、草地、树、

水体和阴影。参考同期的地面资料，对分类结果

进行精度评定，总分类精度为８９．１５％，Ｋａｐｐａ系

数为０．９０４１。

从该分类结果中计算落在３０ｍ空间范围内

（３０×３０网格中）的不透水层像元总数（分辨率为

１ｍ），进而可以计算得到分辨率为３０ｍ的像元

００１１
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不透水层百分比。需要说明的是，由于很难识别

阴影的实际地物类型，被分为阴影的像元需要排

除在百分比计算外。

２．３　犐犛犘估算结果

将利用ＩＫＯＮＳ影像获得的ＩＳＰ结果（３０ｍ

分辨率）作为ＩＳＰ预测模型中的目标变量，Ｌａｎｄ

ｓａｔＴＭ／ＥＴＭ＋影像的６个波段数据（第６波段除

外）作为独立变量，采用随机分层采样方法从中抽

取１８８７组学习样本，采用ＣＡＲＴ集成学习算法

对这些样本进行学习并建立ＩＳＰ预测模型，其中

算法中的学习迭代次数犽ｍａｘ为２５。

在ＩＳＰ预测模型建立后，就可以通过Ｌａｎｄ

ｓａｔＴＭ／ＥＴＭ＋数据估算整个实验区的不透水层

百分比，如图２所示。结合实地资料分析，图中

ＩＳＰ估算结果的空间分布模式从整体上来看比较

合理，ＩＳＰ高于６０％的地区大部分集中在浦东新

区的７大功能区内、主要城镇以及黄浦江沿岸地

区，这主要是因为浦东新区城市化和工业化使得

不透水层地表大为增加；在其他植被覆盖区（如城

市绿地和菜地等）以及江（海）边滩涂地区，ＩＳＰ一

般低于３０％，在城区和郊区结合地区则具有中等

的ＩＳＰ。

图２　上海浦东新区的ＩＳＰ估算结果

Ｆｉｇ．２　ＥｓｔｉｍａｔｉｎｇＩＳＰＲｅｓｕｌｔｏｆＰｕｄｏｎｇＮｅｗＡｒｅａ

ｉｎＳｈａｎｇｈａｉＣｉｔｙｂｙＵｓｉｎｇｔｈｅＰｒｏｐｏｓｅｄＭｅｔｈｏｄ

为了验证ＣＡＲＴ集成学习在ＩＳＰ估算中的

有效性，本文采用相同的训练样本进行了基于单

一ＣＡＲＴ算法的ＩＳＰ估算实验，图３是两种学习

算法在金桥出口加工区附近的ＩＳＰ估算结果比

较。可以看出，单一ＣＡＲＴ方法受其学习能力的

限制，估算结果并不理想，通过调查和判读，其整

体估算效果尚可，但在植被地区的ＩＳＰ估算结果

虚高现象严重，如位于图中左下角的汤臣高尔夫

球场和图右边的大片绿地（ＩＳＰ均达到５０％）；另

外，估算结果中存在较多噪声。相比较而言，

ＣＡＲＴ集成学习方法在整体上取得了令人满意

的估算效果，对植被地区的ＩＳＰ估算比较合理，并

且呈现了更多的细节信息，见图３（ｂ）。

图３　不同学习算法的ＩＳＰ估算结果比较

Ｆｉｇ．３　ＣｏｍｐａｒｉｓｏｎｏｆＩＳＰＲｅｓｕｌｔＥｓｔｉｍａｔｅｄｂｙＤｉｆｆｅｒｅｎｔ

ＭａｃｈｉｎｅＬｅａｒｎｉｎｇＡｌｇｏｒｉｔｈｍｓ

２．４　精度评定

通过回归树模型预测的ＩＳＰ是连续变量，因

此，分类精度评估中常用的混淆矩阵和Ｋａｐｐａ系

数并不适用。本文采用统计回归分析中的４个常

用评价指标来评估ＩＳＰ预测模型的质量，即评估

实际ＩＳＰ值和预测ＩＳＰ值之间拟合程度。这４个

评价指标包括平均偏差、相对偏差和Ｐｅａｒｓｏｎ相

关系数狉２，这些指标已在ＩＳＰ精度评估中得到了

广泛的应用［３，５，６］。

随机抽取了１０００个测试样本用于定量评估

和比较ＩＳＰ预测模型的估算性能，这些测试样本

完全独立于前面的２１８９个训练样本。基于单一

ＣＡＲＴ算法和ＣＡＲＴ集成学习算法的ＩＳＰ预测

模型评估结果见表１。另外，本文也给出了测试

样本中ＩＳＰ预测值和参考值的线性回归优度拟合

结果，如图４所示。

表１　基于两种学习算法的ＩＳＰ预测模型性能比较

Ｔａｂ．１　ＰｅｒｆｏｒｍａｎｃｅＡｓｓｅｓｓｍｅｎｔｏｆＩＳＰＰｒｅｄｉｃｔｉｎｇＭｏｄｅｌｓ

评价指标 单一ＣＡＲＴ学习 ＣＡＲＴ集成学习

犚犕犛犈 １３．７２ １０．２４

平均偏差／（％） １４．４７ １１．１６

相对偏差 ０．５６ ０．３１

狉２ ０．８２ ０．９１

　　测试样本的ＩＳＰ预测值和参考值的回归分析

结果表明，单一ＣＡＲＴ方法的回归直线较多地偏

离了 直线狔＝狓，其斜率和截距分别为０．７９和

１２．１６，并且预测值和参考值在整个范围内波动较

大，部分ＩＳＰ预测值并不可靠，落在给定的５％容

忍误差边界之外，见图４（ａ）。这主要是因为单一

ＣＡＲＴ算法对噪声数据、样本突出值以及不均衡

样本数据的学习能力有限，从而影响了其ＩＳＰ估

算性能。ＣＡＲＴ集成学习算法由于在学习过程

中采用了Ｂｏｏｓｔｉｎｇ重采样技术，提高了预测的泛

１０１１
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化能力和稳健性，因此其ＩＳＰ预测值和参考值的

回归结果要优于单一ＣＡＲＴ算法，回归直线斜率

高达０．８６，绝大部分预测值落在５％容忍误差边

界内，如图４（ｂ）所示。

图４　ＩＳＰ预测值和参考值的线性回归优度拟合结果

Ｆｉｇ．４　ＧｏｏｄｎｅｓｓｏｆＦｉｔｏｆＬｉｎｅａｒＲｅｇｒｅｓｓｉｏｎｏｆ

ＰｒｅｄｉｃｔｉｎｇａｎｄＲｅｆｅｒｅｎｃｅＩＳＰ

３　结　语

本文提出了一种基于 ＣＡＲＴ 集成学习的

ＩＳＰ估算方法，该方法不仅继承了决策树方法的

结构清晰、易于理解、运算效率高等优点，而且采

用了基于Ｂｏｏｓｔｉｎｇ重采样技术的集成学习方式，

进一步提高了ＩＳＰ估算的精度，满足了通过中等

分辨率遥感影像进行城市ＩＳＰ信息可靠提取的需

要。然而，在光学遥感影像中，裸地（包括稀疏的

草地）与一些人工建筑物（如停车场等）之间存在

一定的光谱混淆，仍然导致了一些非人工地物的

ＩＳＰ估算偏高，ＩＳＰ遥感估算中的有效特征选取

问题还有待进一步研究。
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