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摘　要：在精密定轨和轨道外推理论的基础上，对比分析了由ＩＧＳ快速轨道（ＩＧＳｒａｐｉｄｏｒｂｉｔ，ＩＧＲ）外推１ｄ的

轨道与ＩＧＳ最终轨道间的差异，用此外推轨道和最终轨道分别按长基线双差网解方案计算了ＢＲＵＳ、ＩＥＮＧ、

ＰＴＢＢ等欧洲一些ＩＧＳ／ＴＡＩ站的天顶湿延迟（ｚｅｎｉｔｈｗｅｔｄｅｌａｙ，ＺＷＤ），并对两种轨道下各站的ＺＷＤ进行了

对比。轨道对比结果显示，除异常卫星外，“病态”卫星的ＩＧＲ外推１ｄ的轨道仍具有一定的高精度。而ＺＷＤ

的对比结果则表明，当剔除异常卫星的影响并对“病态”卫星加以适当处理后，ＩＧＲ外推１ｄ的轨道用于对流

层实时监测是可行的。
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　　众所周知，采用不同的解算方法、解算软件、

干／湿映射函数、水平梯度模型、截止高度以及使

用不同的卫星轨道等都会对ＺＷＤ的外符合精度

造成不同程度的影响，而是否具有高精度的ＧＰＳ

实时轨道更是ＺＷＤ能否高精度、近实时解算的

关键。由于ＩＧＳ实时星历的使用受到一定的限

制，而一般单位受观测网络小、网际数据难以共

享、技术力量薄弱、软硬件条件不足等因素的制

约，难以进行高精度ＧＰＳ实时定轨工作，因而对

对流层监测中的实时轨道问题进行研究具有重要

的现实意义。文献［１］给出了用ＩＧＳ超快星历配

合星历指数进行轨道松弛的对流层实时监测方

法。本文试图在精密定轨和轨道外推理论的基础

上，探讨ＩＧＲ轨道外推在ＺＷＤ实时计算中的可

行性。

１　犐犌犚外推轨道及其精度分析

本 文 星 历 对 比 及 ＺＷＤ 的 计 算 均 在

ＢＥＲＮＥＳＥ４２软件下进行，具体的轨道积分及轨道

外推采用的模型选择及参数设置见表１。星历数

据主要为２００５年１２月２４至３０日的ＩＧＳ最终星

历及ＩＧＲ星历（ＳＰ３文件及配套的ＥＲＰ文件），有

关卫星的异常变动（如卫星发射、卫星变轨、卫星演

习等）则通过ＣＯＤＥ或 ＭＩＴ等外部渠道获取。图

１给出了ＳＶ０１、ＳＶ０２、ＳＶ０３、ＳＶ０４等四颗“健康”

ＧＰＳ卫星的ＩＧＲ１３５５０．ｓｐ３外推１ｄ的轨道与其

ＩＧＳ１３５５１．ｓｐ３拟合内插轨道的坐标差异情况（其他

“健康”卫星的轨道精度与这四颗类似）。图２给出

了ＳＶ０９、ＳＶ１５、ＳＶ２５、ＳＶ２９等全部共四颗“病态”

卫星 的ＩＧＲ１３５５０．ｓｐ３ 外 推 １ｄ的 轨 道 与 其

ＩＧＳ１３５５１．ｓｐ３拟合内插轨道的差异情况。由图１

和图２可以看出，“健康”卫星的ＩＧＲ外推轨道不仅

具有较高的精度（径向小于０．１ｍ，纵向小于０．５

ｍ，轨道面法向小于０．２５ｍ），而且其变化也较为平

稳；而“病态”卫星的外推轨道精度尽管有所下降，

但也具有一定的高精度（径向小于０．３ｍ，纵向小

于２．０ｍ，轨道面法向小于０．２ｍ）。之所以得到如

此高精度的外推轨道，一方面在于使用的是高精度

的ＩＧＲ星历（及相应的星钟改正和ＥＲＰ数据），另

一方 面，得 益 于 精 细 的 轨 道 摄 动 建 模 及

ＢＥＲＮＥＳＥ４２的高精度轨道积分和轨道外推算法。

值得说明的是，本研究中的 ＥＲＰ 数据和

ＵＴ１ＵＴＣ数据使用的均是事后结果，真正实时
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应用中，应按某种算法外推出这些数据。由图３

可见，在没有大的地球运动异常（如地震等）情况

下，ＥＲＰ及 ＵＴ１ＵＴＣ的变化具有明显的规律

性，根据其变化趋势可以构造出高精度的外推算

法，其外推精度对ＩＧＲ外推１ｄ轨道的影响亦可

控制在３０％内。

表１　轨道积分及轨道外推中所考虑的因素及参数

Ｔａｂ．１　ＦａｃｔｏｒｓａｎｄＰａｒａｍｅｔｅｒｓｉｎＯｒｂｉｔＩｎｔｅｒｇｒａｔｉｏｎａｎｄＥｘｔｒａｐｏｌａｔｉｏｎ

影响因素 参数设置 影响因素 参数设置

时间系及惯性系 ＩＧＳＴ／ＩＧＲＴ，Ｊ２０００ 太阳光压模型 ＢＥＲＮ２

星钟改正的多项式阶次 ２阶 地影影响 Ｙｅｓ

重力场模型及完全阶次 ＪＧＭ３，１２阶次 月影影响 Ｎｏ

地球固体潮 Ｙｅｓ 相对论加速度影响 Ｙｅｓ

海洋潮汐及模型 Ｙｅｓ，ＣＳＲ４．０ 轨道积分迭代次数 ２

极移潮 Ｙｅｓ 轨道拟合之多项式阶次 １０阶

大气潮 Ｎｏ 轨道拟合之分段长度 １ｈ

日、月及行星历表 ＤＥ２００ 轨道变分之多项式阶次 １２阶

日、月引力 Ｙｅｓ 轨道变分之分段长度 ６ｈ

金、木、水、火星引力 Ｙｅｓ

图１　正常ＧＰＳ卫星的ＩＧＳ１３５５１内插轨道与其ＩＧＲ１３５５０外推１ｄ轨道的坐标差异

Ｆｉｇ．１　ＯｒｂｉｔＤｉｆｆｅｒｅｎｃｅｓｏｆＧＰＳＨｅａｌｔｈｙＳａｔｅｌｌｉｔｓＢｅｔｗｅｅｎＩＧＳ１３５５１Ｉｎｔｅｒｐｏｌａｔｅｄ

ＯｒｂｉｔｓａｎｄＩＧＲ１３５５０ＥｘｔｒａｐｏｌａｔｅｄＯｎｅＤａｙＯｒｂｉｔｓ

图２　“病态”卫星的ＩＧＲ１３５５０外推１ｄ轨道与其ＩＧＳ１３５５１内差轨道的坐标差异

Ｆｉｇ．２　ＯｒｂｉｔＤｉｆｆｅｒｅｎｃｅｓｏｆＧＰＳＩｌｌＳａｔｅｌｌｉｔｅｓＢｅｔｗｅｅｎＩＧＲ１３５５０ＥｘｔｒａｐｏｌａｔｅｄＯｎｅＤａｙ

ＯｒｂｉｔａｎｄＩＧＳ１３５５１ＩｎｔｅｒｐｏｌａｔｅｄＯｒｂｉｔ

２　犐犌犚外推轨道与犐犌犛最终轨道下

的犣犠犇对比

　　为了研究ＩＧＲ外推１ｄ的轨道在ＺＷＤ解算

中的可行性，笔者从ＳＯＰＡＣ网站下载了２００５年

１２月 ２４ 至 ３０ 日期间欧洲的 ＢＲＵＳ、ＰＴＢＢ、

ＩＥＮＧ、ＮＰＬＤ、ＷＡＢ２等ＩＧＳ／ＴＡＩ站的 Ａｓｈｔｅｃｈ

Ｚ１２Ｔ接收机（均由高精度的原子钟所驱动）的良

好观测数据和高精度的测站坐标。选择同型号接

收机及优良的ＩＧＳ／ＴＡＩ站的目的在于尽量避免

内、外部环境以及不同型号接收机的性能差异可

能对ＺＷＤ造成过大的影响。ＺＷＤ的计算均采

用ＢＥＲＮＥＳＥ４２软件按长基线双差网解方案进行，

对流层经验模型采用ＳＡＡＳ模型，映射函数采用

ＮＭＦ，卫星截止高度角设为１０°，每ｈ引入一个天

顶湿延迟改正参数ＺＷＤ。图４（ａ）给出了２００５年

年积日为３６０至３６４的ＢＲＵＳ、ＩＥＮＧ、ＰＴＢＢ三个

站的ＩＧＲ外推１ｄ的轨道与其ＩＧＳ最终轨道下计

算的ＺＷＤ的结果差异（以ＩＧＳ最终轨道下的ＺＷＤ

为参考真值），包含不“健康”卫星。

由图４可见，在包含不“健康”卫星的情况下，

ＩＧＲ外推１ｄ的轨道和ＩＧＳ最终轨道下的ＺＷＤ

差值除个别时段超过５ｍｍ外，大多在３～５ｍｍ

以下，由于“病态”卫星毕竟是少数，而其径向轨道

误差又多在０．５ｍ以下（ＺＷＤ的计算精度主要

５１６



武 汉大学学报·信息科学版 ２００７年７月

与径向轨道误差有关），因而当对不“健康”卫星以

及低仰角的不良观测数据进行适当处理后，将

ＩＧＲ外推轨道误差对ＺＷＤ的影响控制在５ｍｍ

之下是完全可能的。图４（ｂ）说明删除异常卫星

和“病态”卫星后的ＩＧＲ外推１ｄ轨道计算的

ＺＷＤ精度比不删除时有明显提高，年积日３６０ｄ

删除的是９、１５、２５、２９这四颗卫星，年积日３６１ｄ

删除的是８、９、１５这三颗卫星。

众所周知，数值天气预报对实时或近实时的天

顶湿延迟的精度要求为６ｍｍ时，可降水量（ＰＷＶ）

才能满足１ｍｍ的精度要求
［２］。考虑到异常卫星

及“病态”卫星的探测和处理存在不可靠因素，加之

ＥＲＰ参数外推可能有较大的误差影响，因而ＩＧＲ

外推１ｄ的轨道用于１ｍｍ精度的ＰＷＶ监测存在

一定的困难，但如果将ＰＷＶ的精度要求予以适

当降低（如降至１．５ｍｍ，对应ＺＷＤ的精度要求

放宽为９ｍｍ），则高精度的ＩＧＲ外推１ｄ轨道用

于实时对流层监测是完全可行的。至于对“病态”

卫星的处理问题，国内外许多学者作了大量的研

究，也得出了一些有效的方法，如剔除“病态”卫

星、降低“病态”卫星的权重、对所有卫星或只对

“病态”卫星进行轨道松弛等［３５］。

　

图３　２００２年至２００５年

的极移及ＵＴ１ＵＴＣ参数

Ｆｉｇ．３　ＥＲＰａｎｄＵＴ１ＵＴＣＤａｔａｏｆ

Ｙｅａｒ２００２ｔｏ２００５

　　　

图４　ＩＧＲ外推１ｄ轨道和ＩＧＳ最终轨道的ＺＷＤ差异

Ｆｉｇ．４　ＤｉｆｆｅｒｅｎｃｅｏｆＺＷＤｓＥｓｔｉｍａｔｅｄｆｒｏｍＩＧＲＥｘｔｒａｐｏｌａｔｅｄ

ＯｎｅＤａｙＯｒｂｉｔｓａｎｄＩＧＳＦｉｎａｌＩｎｔｅｒｐｏｌａｔｅｄＯｒｂｉｔｓ

　　目前，ＩＧＲ星历的时间（即ＩＧＲＴ）精度已经

很高，ＧＰＳ星钟的变化也比较稳定
［１］，因而摄动

模型的精度（如光压模型）以及ＥＲＰ的外推效果

将是制约ＩＧＲ外推轨道的外符合精度得以进一

步提高的重要因素，高精度的光压模型以及ＥＲＰ

外推算法将是进一步研究的重点。
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