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摘　要：基于Ｋｏｈｏｎｅｎ网络模型，对标准的ＳＯＭ（ｓｅｌｆｏｒｇａｎｉｚｉｎｇｆｅａｔｕｒｅｍａｐ）算法进行了改进，在保持点群原

有空间分布特征的情况下研究点群的选取和典型化。实践表明，该方法适合任意空间分布类型的点群综合。
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　　地图上具有区域景观特征的点群目标很多，

如呈点状分布的散列式居民地、密集分布的点状

表示的小岛屿群或小湖泊群等。点群目标的综合

是制图综合中最基本的问题之一，一般只能选取，

不能合并，在减少相似目标的数量的同时，保持点

群的空间分布特征。众多的专家学者提出了一些

点群选取方法［１７］。本文基于ＳＯＭ 算法对点群

综合问题进行了分析和算法改进，该方法能自动

保持点群的空间分布特征。

１　点群的分布类型及综合原则

本文所研究的点群指点状表示的同类地理要

素构成的群体，从视觉上看呈离散分布，但就人的

感知来说，这些点构成的群体存在一定的分布范

围，呈现一定的分布结构、排列方式，在局部环境

中形成了一个相对的整体，在整个研究区域中，也

可以是一个“子群”，并且在研究过程中对点的具

体性质暂不考虑，即认为点群中的点具有同等重

要性，并且无大小之分。点群的分布主要有３种：

沿线状要素离散分布、面域上离散分布、均匀规则

分布。

点群综合的基本原则是［１，２，８］：① 轮廓形状保

持。随着抽象程度的增加，点群在空间认知上会

构成一个虚拟的区域，这个区域的边界就是点群

的轮廓。② 密度对比、纹理结构特征保持。点群

的空间分布特征在综合后应当保留，所用的主要

指标是密度和纹理。

２　犛犗犕的基本原理

自组织特征映射（ＳＯＭ）是模拟感官输入在

人脑中的皮质映射，将任意维数的大数据集在保

留数据样本初始模式的情况下转变为低维映射

（通常是一维或者二维），在输入空间彼此接近的

样本在低维空间也彼此接近。ＳＯＭ 网络结构一

般为两层：输入层和输出层，输出层的神经元可以

被放置在一维、二维或者更高维的网格节点上，输

入层和输出层之间实行全互连接。在输入层有犇

个输入节点，对应输入样本的犇 维属性，用输入

向量犡＝［狓１，狓２，…，狓犇］
Ｔ 表示，输出层有 犕 个

节点，对应着犕 个神经元，通过权值狑犻犼（犻＝１，２，

…，犕；犼＝１，２，…，犇）和输入节点相连，输出层中

的任一神经元犻，其输入为狌犻＝∑
犇

犼＝１

狑犻犼狓犼，输出为

犞犻＝犳（狌犻），其中犳（·）为神经元激励函数，一般

取线性函数［９］。

ＳＯＭ的学习算法由包含竞争、合作和更新三

个过程的反复迭代完成。在竞争过程中，具有与

输入向量距离最近权值向量的神经元获胜。根据

应用的不同，关注的兴趣点可能是获胜神经元的

标号（输出层格网中的位置），或者是在Ｅｕｃｌｉｄ距
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离意义下输入向量最近的突触权值向量。生物神

经元在接受刺激并进行竞争产生获胜神经元后，

获胜神经元不但加强自身，而且带动周围的邻近

神经元得以相应地加强，同时抑制周围距离较远

的神经元，即所谓“ｏｎｃｅｎｔｅｒ／ｏｆｆｓｕｒｒｏｕｎｄ”现象，

这就是合作。获胜神经元位于合作神经元的拓扑

邻域的中心，邻域范围内的神经元是兴奋神经元，

拓扑邻域函数的典型选择是高斯函数［９］。初始化

时，包括以获胜神经元为中心的几乎所有神经元

随着迭代次数的增加以指数方式衰减。更新的过

程也是突触自适应的过程，采用 Ｈｅｂｂ学习规则

的改变形式对网络上获胜神经元拓扑邻域内的神

经元进行权值向量更新。

学习迭代执行，直到遇到终止阈值，迭代的结

果是使获胜神经元犼的突触权值向量犠犼向输入

向量犡 移动。随着训练数据的重复出现，由于邻

域更新使得突触权值向量趋于服从输入向量的分

布，并具有保持邻近关系不变的特点。

３　基于犛犗犕的点群综合

一旦ＳＯＭ算法收敛，其所计算的特征映射能

显示输入空间的重要统计特性［９］：① 输入空间的

近似。输出空间的突触权值向量｛犠犼｝的集合表示

的特征映射对输入空间提供了一个良好的近似。

② 密度匹配。特征映射反映了输入分布在统计上

的变化，输入空间中以高概率抽取的区域在输出

空间映射为更大的区域，比以低概率抽取的区域

拥有更好的分辨率。表现在突触权值向量空间，

高输入密度区域仍是高密度表示，低输入密度区

域仍是低密度表示，即能够保持密度对比特征。

ＳＯＭ的这两个重要统计特性正好能够满足

点群综合中的密度对比、纹理结构特征保持的要

求。因此，考虑用ＳＯＭ来进行点群的综合。

点群的综合还需要保持其分布轮廓。ＳＯＭ的

学习机制决定了当样本空间中多个样本映射到输

出空间的同一个单元时，这个神经元的权值向量会

在这多个样本向量间移动，最后收敛于一个中间位

置，反映在点群的综合中就是点群的典型化可以保

持其密度对比、纹理结构特征，但其轮廓范围很难

保持，存在“内缩”，即向点群内部移动的现象。

艾廷华等按照 Ｇｅｓｔａｌｔ邻近性原则，在点群

Ｄｅｌａｕｎａｙ三角网上进行“剥皮”操作，获取点群分

布范围多边形［２］，这种方法能够有效地保持点群

的外部轮廓特征。鉴于此，本文通过建立点群的

外部轮廓多边形来表达点群的分布范围，轮廓线

采用ＤｏｕｇｌａｓＰｅｕｃｋｅｒ算法化简。Ｋｏｈｏｎｅｎ特征

映射能保持点群密度对比、纹理结构特征，外部轮

廓多边形化简能够保持点群的外部轮廓范围，可

以将二者结合起来，用于点群的综合。具体方法

如下：① 建立原始点群的外部轮廓多边形，分成

外部轮廓点集和内部点集。② 外部轮廓点集用

ＤｏｕｇｌａｓＰｅｕｃｋｅｒ算法化简。③ 内部点集作为输

入样本，用 Ｋｏｈｏｎｅｎ网络进行特征映射。④ 二

者的并集便是综合后的点群，外部轮廓点和内部

点的删减数目比例相同。

内部点的化简过程如下。

１）初始化过程，设置各项变量和参量。

样本数据集：设内部点点集中有犖 个点作为

输入样本，由于只考虑位置属性，则样本空间维数

为２维，即输入节点只有两个，为点的狓、狔坐标。

输出层：输出层的神经元的个数为 犕，由开

方根定律计算确定，神经元呈二维网格排列，排列

的方式可以任意指定，神经元在网格中的位置决

定了其拓扑邻域。

权向量空间：输出层的每个神经元通过权向

量与输入层实行全互连接，所有的权向量构成了

权向量空间，同样本数据空间一样，也是２维空

间，犠犻＝｛狑犻１，狑犻２｝，犻＝１，２，…，犕。

权向量在学习开始时要进行初始化，随机给

定输入向量分布范围内的值作为权向量的初始

值，或者直接在样本空间选择 犕 个样本，将其向

量值作为初始权值。

另外，根据经验设定初始学习率η０、最大迭

代次数、权值的变化量平方和阈值、时间常数τ１、

τ２ 以及初始拓扑邻域σ０ 的值。

２）训练过程如下。

① 初始化。从样本数据集中随机选取犕 个

样本作为权向量初始化值犠犼（０），犼＝１，…，犕。

② 取样。随机从样本数据集中取样本犡，其

坐标值作为输入层节点的输入。

③ 相似性匹配。计算输出层每个神经元权

向量与样本犡的欧氏距离，找出获胜神经元犮。

④ 更新。动态调整获胜神经元邻域内所有

神经元的权向量。

⑤ 继续步骤②，直到满足终止条件为止。

在迭代过程中，如果权值的变化量平方和

∑
犕

犻＝１
Δ犠

２
犻小于一定阈值，说明权值已趋于稳定，达到

收敛状态，迭代终止，也可直接设定一个最大迭代

次数作为终止条件。

映射完成后，输出空间的突触权值向量｛犠犼｝

７２６
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的集合就是输入空间向量的典型化的综合结果，

如果将权值向量用距离最近的样本点代替，就是

选取的综合结果。

４　点群综合的应用实例

图１是利用上述方法进行面域上任意分布点

群的综合实例。图１（ａ）是原始数据集，共有５１

个点，综合时点数减少至７０％时，保留３６个点；

图１（ｂ）是利用Ｋｏｈｏｎｅｎ特征映射综合的结果和

原始点集的比较图，圈是综合后的点，黑色三角形

点是原始点。可以看出，虽然密度对比能够保持，

但综合后点的分布轮廓存在一定的畸变。

按照前面所述的方法，将原始数据集分成凸

壳点集和内部点集分别化简，图１（ｃ）显示了提取

出来的凸壳点集；采用 ＤｏｕｇｌａｓＰｅｕｃｋｅｒ算法化

简，保留７０％的点，见图１（ｄ）；图１（ｅ）是内部点

典型化的结果与原始数据点集的比较图；图１（ｆ）

是内部点直接选取的结果与原始数据点集的比较

图。内部点集的综合结果与凸壳点集的化简结果

合并，得到最终的综合结果，图１（ｇ）是最终的典

型化结果图；图１（ｈ）是最终选取的结果图，二者

之间有差别。从视觉上可看出，图１（ｇ）相对于图

１（ｂ）有很大的改善，轮廓范围和密度对比特征都

能很好地保持；图１（ｉ）是综合后点数减少至７０％

的结果图；图１（ｊ）是综合后点数减少至４０％的结

果图；图１（ｋ）是综合后点数减少至２０％的结果

图。可见，综合的结果都能保持原始点集的空间

分布特征。

图１　面域上离散分布的点群综合

Ｆｉｇ．１　ＧｅｎｅｒａｌｉｚａｔｉｏｎｏｆＰｏｉｎｔｓＧｒｏｕｐＳｃａｔｔｅｒｅｄｉｎＰｌａｎｅ

为了验证综合前后点群的相对密度是否保

持，可计算出点综合前后的密度进行对比。保持

相对密度是指原来密度大的区域，综合后密度仍

然相对较大；原来密度小的区域，综合后密度仍然

相对较小。某点的密度用包围该点的Ｖｏｒｏｎｏｉ图

元多边形面积的倒数表示［２］，点的选取可直接计

算点选取前后的密度进行对比，典型化的点综合

后的密度可直接计算，综合前的密度用该点所代

表的原始区域内点的平均密度代表。图２是本例

中选取点的综合前后密度对比图（图１（ｈ）与图

１（ａ）的对比），共选取点３６个。从图中可以看出，

选取前后的密度高低对比仍能保持，说明本方法

能够保持相对密度。

图２　点的选取前后密度对比图

Ｆｉｇ．２　ＣｏｎｔｒａｓｔＤｉａｇｒａｍＢｅｔｗｅｅｎＯｒｉｇｉｎａｌａｎｄ

ＲｅｓｅｒｖｅｄＰｏｉｎｔｓＤｅｎｓｉｔｙ

另外，还选用了一个沿特定方向分布的点群

进行综合试验。如图３（ａ）是原始点集，有３６个

点，点群沿线分布，综合后，只需保持其疏密对比

特征，可以直接用 Ｋｏｈｏｎｅｎ特征映射进行典型

化。当综合后的点数保留７０％时，需选取２５个

点；图３（ｂ）是选取综合的结果，图３（ｃ）是典型化

综合的结果，二者在分布形态上没有大的差别，只

是在有些点之间的距离上有微小的偏移；当综合

后保留原始点群４５％的点数，即１６个点时，典型

化的结果如图３（ｄ）所示，图３（ｅ）是选取的结果。

两者对比可以看出，当比例尺进一步缩小时，综合

的结果趋于一致。实例表明，综合后的点的分布

保持了原始数据的密度对比、分布走向等特征。

图３　沿特定方向分布的点群的综合

Ｆｉｇ．３　ＧｅｎｅｒａｌｉｚａｔｉｏｎｏｆＰｏｉｎｔｓＧｒｏｕｐＤｉｓｔｒｉｂｕｔｉｎｇ

ＡｌｏｎｇａＳｐｅｃｉａｌＯｒｉｅｎｔａｔｉｏｎ

图４是一个数据量相对较大的点群选取试

验。图４（ａ）是原始点集，有２１３个点，图４（ｂ）是

选取约７０％点的结果，即保留了１４４个点，图

８２６
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４（ｃ）为比例尺缩小后的结果。从图中可看出，分

布范围仍保持了原来多边形的形状，视觉上的相

对密度也得到了较好的保持。

图４　保持空间分布特征的的点群选取

Ｆｉｇ．４　ＳｅｌｅｃｔｉｏｎｏｆＰｏｉｎｔｓＧｒｏｕｐｗｉｔｈＳｐａｔｉａｌ

ＤｉｓｔｒｉｂｕｔｉｏｎＲｅｍａｉｎｉｎｇ

５　结　语

综合实例表明，基于Ｋｏｈｏｎｅｎ网络的点群综

合化简方法能够保持原始点群的空间分布特征。

但本文只考虑了单个点群的综合，并且假定点与

点具有同等重要性。当考虑点目标的语义特征以

及多个子群同时存在时，就需要考虑点群的聚类，

并针对具体问题考虑点目标的地理语义特征及上

下文关系，这有待进一步研究。
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