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子午线弧长反问题新解

郑　彤１　边少锋１

（１　海军工程大学导航工程系，武汉市解放大道７１７号，４３００３３）

摘　要：针对子午线弧长反解计算过于繁琐的问题，利用复合函数的求导法则，变换变量进行幂级数展开，给

出了通项公式，利用 Ｈｅｒｍｉｔｅ插值原理推导了各参数，借助 Ｍａｔｈｅｍａｔｉｃａ计算机代数系统，得出了这些公式用

偏心率犲表示的幂级数表达式。经试算其精度在０．００１″以上，可供实际使用。
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　　众所周知，椭球的子午线弧长计算
［１６］，是在

处理大地测量、天文测量、航天航空技术的某些问

题，以及在处理地理信息系统环境中的某些几何

问题时，都要经常进行的一项工作。通常，子午线

弧长的计算式都是把椭圆积分的表达式，依二项

式展开成级数形式后，再逐项积分，在保证必要的

最佳精度（通常为０．０１ｍｍ）下给出实用的计算

式。但在由弧长反求子午线对应的纬度时，相应

的导数不是弧长变量的显函数，即便按二项式展

开也不可能对其进行逐项积分。因而围绕这一问

题就有不同的解法，总体上可归纳为迭代解法和

直接解法。迭代解法就是套用子午线弧长正解公

式，按牛顿迭代法迭代求出弧长相应的纬度。直

接解法可分为插值法建立的多项式逼近公式［７］与

利用三角级数回求法求出的直接解公式［８］两类。

三角级数回求法一定程度上解决了这些问题，但

涉及数学分析中较复杂的Ｌａｇｒａｎｇｅ级数理论，推

导过程复杂，又在一定程度上影响了这些公式的

应用。笔者重新研究了子午线弧长反问题，借助

Ｍａｔｈｅｍａｔｉｃａ计算机代数系统
［３］，利用隐函数及

复合函数的求导法则和 Ｈｅｒｍｉｔｅ型插值公式，给

出了子午线弧长反问题的几种直接解法。

１　子午线弧长计算公式简介

根据椭球的几何参数，计算由赤道到纬度犅

处的椭球子午线弧长［１６］为：

犡＝∫
犅

０
犪（１－犲

２）（１－犲
２ｓｉｎ２犅）－３

／２ｄ犅 （１）

式中，犡为弧度变量；犅为大地纬度；犲为偏心率。

利用 Ｍａｔｈｅｍａｔｉｃａ计算机代数系统，通过级

数展开、积分和三角函数指数化倍角３个命令，子

午线弧长展开式为：

犡＝犪（１－犲
２）［犅－（

３

８
ｓｉｎ２犅－

３

４
犅）犲２＋（

１５

２５６

　ｓｉｎ４犅－
１５

３２
ｓｉｎ２犅＋

４５

６４
犅）犲４－（

３５

３０７２
ｓｉｎ６犅－

　
１０５

１０２４
ｓｉｎ４犅＋

５２５

１０２４
ｓｉｎ２犅－

１７５

２５６
犅）犲６＋（

３１５

１３１０７２

　ｓｉｎ８犅－
１０５

４０９６
ｓｉｎ６犅＋

２２０５

１６３８４
ｓｉｎ４犅－

２２０５

４０９６

　ｓｉｎ２犅＋
１１０２５

１６３８４
犅）犲８＋犗（犲

１０）］ （２）

２　子午线弧长反问题

为解决子午线弧长反问题，即已知子午线弧

长，求对应的大地纬度，需要引入一个类似于纬度

的变量狓。子午线弧长微分公式为
［１３］：

ｄ犡
ｄ犅
＝

犪（１－犲
２）

（１－犲
２ｓｉｎ２犅）３

／２
（３）

式中，犡 并不具有类似于纬度变量犅 的变化特

征。为此，先求出一个象限内椭圆的弧长犡（π／

２），将犅＝π／２代入式（２），可得：

犡（π／２）＝犪（１－犲
２）（１＋

３

４
犲２＋

４５

６４
犲４＋
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１７５

２５６
犲６＋

１１０２５

１６３８４
犲８＋…）

π
２

（４）

然后将子午线弧长犡“类纬度化”，即将子午线除

以犡（π／２）并乘以π／２，可得：

狓＝
犡

犡（π／２）
·π
２
＝

犡

犪（１－犲
２）（１＋

３

４
犲２＋
４５

６４
犲４＋

１７５

２５６
犲６＋
１１０２５

１６３８４
犲８＋…）

（５）

　　由此可知，当犡＝０时，狓＝０；犡＝犡（π／２）时，

狓＝π／２。引入定义：

犃＝
２

π∫
π／２

０

１
（１－犲

２ｓｉｎ２犅）３
／２ｄ犅 （６）

利用 Ｍａｔｈｅｍａｔｉｃａ计算机代数系统，将犃展开成

偏心率犲的幂级数形式可得：

犃＝１＋
３

４
犲２＋

４５犲４

６４
＋
１７５犲６

２５６
＋
１１０２５犲８

１６３８４
＋… （７）

利用式（５）、式（３），可变形为：

ｄ犅
ｄ狓
＝犃（１－犲

２ｓｉｎ２犅）３
／２ （８）

２．１　子午线弧长反解的解析型幂级数展开

式（８）是狓的隐函数，以往反解问题多使用

迭代法［１，２］、插值法［４］和三角级数回求法［５］。利

用隐函数的求导法则，将其展开为子午线弧长新

变量狓的正弦幂级数。为使展开过程简明一些，

引入另一新变量狋＝犲ｓｉｎ狓，则有：

ｄ狋＝犲ｃｏｓ狓ｄ狓，
ｄ狓
ｄ狋
＝

１

犲ｃｏｓ狓
（９）

并记： 犳（狋）＝
ｄ犅
ｄ狋
＝犃（１－犲

２ｓｉｎ２犅）３
／２ （１０）

　　将犳（狋）展开为如下幂级数形式：

犳（狋）＝
ｄ犅
ｄ狓
＝犳狋（０）＋犳′狋（０）狋＋

１

２！
犳″狋（０）狋

２
＋

１

３！
犳狋（０）狋

３
＋… （１１）

利用复合函数求导的链式法则：

犳′狋＝
ｄ犳
ｄ犅
ｄ犅
ｄ狓
ｄ狓
ｄ狋
，犳″狋＝

犳′

犅
ｄ犅
ｄ狓
ｄ狓
ｄ狋
＋
犳′

狓
ｄｘ

ｄ狋
，…

（１２）

借助 Ｍａｔｈｅｍａｔｉｃａ计算机代数系统，并略去求解

过程依次可求得：

犳′狋（０）＝０，犳″狋（０）＝－３犃
３，犳狋（０）＝０，犳

（４）
狋 （０）＝

３犃３（－４＋犃
２（４＋１５犲

２））

犲２
，犳

（５）
狋 （０）＝０，

犳
（６）
狋 （０）＝

３犃３（６４－２０犃
２（４＋１５犲

２）＋犃
４（１６＋３７２犲

２
＋５２５犲

４））

犲４
，犳

（７）
狋 （０）＝０，犳

（８）
狋 （０）＝

　
３犃３（－２３０４＋７８４犃

２（４＋１５犲
２）－５６犃

４（１６＋３７２犲
２
＋５２５犲

４）＋犃
６（６４＋６７６８犲

２
＋４２３６０犲

４
＋３３０７５犲

６））

犲６

（１３）

　　利用Ｍａｔｈｅｍａｔｉｃａ计算机代数系统，将上述变量 展开成偏心率犲的幂级数形式并代入式（１１），可得：

犳（狋）＝犃－
３犃３

２！
（犲ｓｉｎ狓）２＋

３犃３［－４＋犃
２（４＋１５犲

２）］

４！犲２
（犲ｓｉｎ狓）４＋

３犃３［６４－２０犃
２（４＋１５犲

２）＋犃
４（１６＋３７２犲

２
＋５２５犲

４）］

６！犲４
（犲ｓｉｎ狓）６＋

３犃３［－２３０４＋７８４犃
２（４＋１５犲

２）－５６犃
４（１６＋３７２犲

２
＋５２５犲

４）＋犃
６（６４＋６７６８犲

２
＋４２３６０犲

４
＋３３０７５犲

６］

８！犲６
·

（犲ｓｉｎ狓）８ （１４）

　　将式（１４）逐项积分，并将式（７）代入，由于犲
１０

只有１０－１４ｍ的量级，将其舍去，可得：

犅＝狓＋αｓｉｎ２狓＋βｓｉｎ４狓＋γｓｉｎ６狓＋δｓｉｎ８狓

α

β

γ

烄

烆

烌

烎δ

＝

３

８
犲２＋

３

１６
犲４＋

２１３

２０４８
犲６＋

２５５

４０９６
犲８

２１

２５６
犲４＋

２１

２５６
犲６＋

５３３

８９１２
犲８

１５１

６１４４
犲６＋

１５１

４０９６
犲８

１０９７

１３１０７２
犲

烄

烆

烌

烎
８

　（１５）

　　上式为子午线弧长反解三角函数倍角形式，

而对计算机编程子午线弧长反解的三角函数指数

形式具有更高的计算效率。略去推导过程，可导

出子午线弧长反解的三角函数幂指数形式为：

犅＝狓＋犪１ｓｉｎ狓ｃｏｓ狓＋犪２ｓｉｎ
３狓ｃｏｓ狓＋犪３ｓｉｎ

５狓

　ｃｏｓ狓＋犪４ｓｉｎ
７狓ｃｏｓ狓

犪１

犪２

犪３

犪

烄

烆

烌

烎４

＝

３

４
犲２＋

４５

６４
犲４＋

１７５

２５６
犲６＋

１１０２５

１６３８４
犲８

－
２１

３２
犲４－

２７７

１９２
犲６－

１９４１３

８９１２
犲８

１５１

１９２
犲６＋

５７０７

２０４８
犲８

－
１０９７

１０２４
犲

烄

烆

烌

烎

８

　（１６）

　　这两种形式是完全等价的，习惯上用倍角形

６５２
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式来表示，但为方便计算机运算使用幂指数形式

而不使用倍角形式。推导该式时，犃 取到犲８，

式（１５）和式（１６）中也只取到犲８项。提高幂级数的

次数，可减小该项系数的误差。

２．２　子午线弧长反解的插值型幂级数展开

２．２．１　仅含边界条件的Ｈｅｒｍｉｔｅ型插值公式

设子午线弧长反解公式有如下子午线弧长反

解三角函数倍角和幂指数两种形式：

犅＝狓＋αｓｉｎ２狓＋βｓｉｎ４狓＋γｓｉｎ６狓＋

　δｓｉｎ８狓 （１７）

犅＝狓＋犪１ｓｉｎ狓ｃｏｓ狓＋犪２ｓｉｎ
３狓ｃｏｓ狓＋

　犪３ｓｉｎ
５狓ｃｏｓ狓＋犪４ｓｉｎ

７狓ｃｏｓ狓 （１８）

式中，犪犻为待定系数，可利用若干点处的纬度及其

导数值确定。由式（８）可直接求得：

犅′（０）＝犃，犅′（π／２）＝犃（１－犲
２）３／２ （１９）

对式（８）连续求导，可得 犅″（狓），但 犅″（狓）在

狓＝０、π／２处均为零，继续对犅″（狓）求导，可得：

犅（０）＝－３犲
２犃３，犅（π／２）＝３犲

２（１－犲
２）７／２犃３

（２０）

对犅的表达式求导数，并联立导出的４个插值条

件，可得：

２ ４ ６ ８

－２ ４ －６ ８

－８－６４－２１６－５１２

８－６４ ２１６－

烄

烆

烌

烎５１２

α

β

γ

烄

烆

烌

烎δ

＝

犅′（０）－１

犅′（π／２）－１

犅（０）

犅（π／２

烄

烆

烌

烎）

（２１）

１ ０ ０ ０

－１－１－１－１

－４ ６ ０ ０

烄

烆

烌

烎４ １０ １６ ２２

犪１

犪２

犪３

犪

烄

烆

烌

烎４

＝

犅′（０）－１

犅′（π／２）－１

犅（０）

犅（π／２

烄

烆

烌

烎）

（２２）

将式（７）、式（１９）和式（２０）代入式（２１）和式（２２）

右端，解出相应的未知参数，将有关各量化为偏心

率犲的幂级数形式，可得式（１５）和式（１６）。

２．２．２　含中点条件的插值型幂级数展开

由弧长正解公式以及犅（狓＝π／４）≈π／４作为

纬度在中点狓＝π／４的近似值，通过迭代过程，可

得：

犅（狓＝π／４）＝
π
４
＋
３

８
犲２＋

３

１６
犲４＋

６１

７６８
犲６＋

１３

５１２
犲８＋… （２３）

将上式代入犅′（狓）并展开，可得：

犅′（π／４）＝
ｄ犅
ｄ狓
（狓）

狓＝
π
４

＝

　１－
２１

６４
犲４－

２１

６４
犲６－

３５９９

１６３８４
犲８＋… （２４）

　　上式及对上式求导并令狓＝０、π／４、π／２时，

与§２．１通过微分方程求出的起点和终点处纬度

犅对狓的导数值、本节迭代求出的狓＝π／４处的

纬度值和导数值联立，可得：

２ ４ ６８

１ ０－１０

０－４ ０８

－２ ４－

烄

烆

烌

烎６８

α

β

γ

烄

烆

烌

烎δ

＝

犅′（０）－１

犅（π／４）－π／２

犅′（π／４）－１

犅′（π／２）－

烄

烆

烌

烎１

（２５）

１ ０ ０ ０

１

２

１

４

１

８

１

１６

０
１

２

１

２

３

８

－１ －１ －１ －

烄

烆

烌

烎１

犪１

犪２

犪３

犪

烄

烆

烌

烎４

＝

犅′（０）－１

犅（π／４）－π／２

犅′（π／４）－１

犅′（π／２）－

烄

烆

烌

烎１

（２６）

将式（７）、式（１９）、式（２３）和式（２４）代入式（２５）和

式（２６）右端，解出相应的未知参数，将有关各量化

为偏心率犲的幂级数形式，可得：

α

β

γ

烄

烆

烌

烎δ

＝

３

８
犲２＋

３

１６
犲４＋

２１３

２０４８
犲６＋

２５５

４０９６
犲８

２１

２５６
犲４＋

２１

２５６
犲６＋

３５

５１２
犲８

１５１

６１４４
犲６＋

１５１

４０９６
犲８

８８１

１３１０７２
犲

烄

烆

烌

烎
８

（２７）

犪１

犪２

犪３

犪

烄

烆

烌

烎４

＝

３

４
犲２＋

４５

６４
犲４＋

１７５

２５６
犲６＋

１１０２５

１６３８４
犲８

－
２１

３２
犲４－

２７７

１９２
犲６－

１８５４９

８９１２
犲８

１５１

１９２
犲６＋

５０５９

２０４８
犲８

－
８８１

１０２４
犲

烄

烆

烌

烎
８

（２８）

　　比较式（１５）、式（１６）、式（２７）及式（２８），它们

的系数大部分完全相同或接近，表明分析法导出

的反解公式与插值法导出的反解公式符合相当

好。这也从另一方面说明前面分析法导出的反解

公式是正确的。当然，这种比较也有局限性，因为

插值型反解公式和解析型反解公式是基于两种不

同原理和不同途径导出的，插值型公式在插值节

点上是绝对精确的，误差分布比较均匀；而解析型

幂级数误差是随着距展开节点变量增大而逐步增

大的，故在最后一项犲８ 相差较大。另外，幂级数

展开公式与仅含边界条件的 Ｈｅｒｍｉｔｅ插值法导

出的公式具有相同的形式，并不是说两种方法结

果完全一样，而是说明了这两种方法在我们要求

的精度范围（即犲８）内一致，可以设想当推导至一

定阶数时，两种方法最终会有一定差异。

７５２
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３　算例和误差分析

取克拉索夫斯基椭球犪＝６３７８２４５，犲２＝

０．００６６９３４２１６２２９７，利用正解公式，求出纬度

犅＝π／８、π／６、π／４、π／３、３π／８处的子午线弧长。

然后再代入反解公式，求出相应的纬度值并与纬

度的理论值对比，两者差值即为误差：

Δ犅犻＝犅犻－犅（狓犻） （２９）

其值大小可反映展开公式的精确与否，有关结果

列于表１。

表１　三种反解公式误差对比

Ｔａｂ．１　ＥｒｒｏｒＣｏｍｐａｒｉｓｉｏｎｏｆＴｈｒｅｅＫｉｎｄｓｏｆ

ＩｎｖｅｒｓｅＦｏｒｍｕｌａ

计算节点
幂级数

展开法

两点 Ｈｅｒｍｉｔｅ

插值法

三点 Ｈｅｒｍｉｔｅ

插值法

犅＝π／８ －（２×１０－５）″ －（２×１０－５）″ （３×１０－５）″

犅＝π／６ （２×１０－５）″ （２×１０－５）″ （２×１０－５）″

犅＝π／４ －（６×１０－５）″ －（６×１０－５）″ ０

犅＝π／３ （２×１０－４）″ （２×１０－４）″ （２×１０－４）″

犅＝３π／８ （２×１０－４）″ （２×１０－４）″ （５×１０－５）″

　　从表１可以看出，含中点条件的插值型反解

公式较解析型反解公式精度高，是由于插值型反

解公式有较强的控制作用，而解析型反解公式只

有端点处的导数条件。含中点条件的插值型反解

公式，在加入中点插值条件这一强有力的控制条

件后，精度又有更进一步的提高，在三种方法中属

于精度最高的一种。它既在起点，又在中点及末

点都有插值条件。这５个点上的误差有一定的代

表性，５个点近似均匀地分布在［０，π］区间上，其

他点的误差一般不会大于这些点的误差。
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