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顾及犳３项的电离层延迟模型

李征航１　陈　锴１　刘万科１　黄　欢１

（１　武汉大学测绘学院，武汉市珞喻路１２９号，４３００７９）

摘　要：给出了顾及犳
３ 项时消除电离层延迟的两种方法：用三频观测值来消除电离层延迟，直接用地磁场模

型来计算犳
３ 项。提出了一种用一个三次曲面来拟合３０°×４０°的区域内的场强犎 的简化算法。用两种方法

求得的电离层延迟之差小于０．５ｍｍ。

关键词：电离层延迟；三频改正；球谐函数；曲面拟合；格网点

中图法分类号：Ｐ２２８．４１

１　电离层延迟

在太阳紫外线、Ｘ射线和高能粒子的作用下，

电离层中的部分气体被电离产生大量的电子和正

离子，从而形成了一个电离区域。电磁波信号在

穿过电离层时传播速度会发生变化，变化程度取

决于电子密度犖犲 和信号频率犳。在电离层中单

一频率的电磁波信号的相位传播速度狏狆 为：

狏狆 ＝犆 １＋犽１
犖犲

犳
２ 犽２

犖犲（犎ｃｏｓθ）

犳
３［ ＋

（犽１
２
＋犽３）

犖犲
２

犳
４ ＋ ］… （１）

式中，犎 为地磁场场强犎 的模；θ为场强方向与

信号传播方向之间的夹角。当电磁波信号为右旋

极化波时（如ＧＰＳ卫星信号），犽２前取负号；反之，

当信号为左旋极化波时，犽２前取正号。犽１、犽２、犽３

为相应的系数［１］。

在ＧＰＳ测量中，利用载波相位观测值来测定

卫星至接收机间的距离时，顾及电离层延迟改正

后的距离犛为：

犛＝∫Δ狋
狏狆ｄ狋＝ρ＋犽１

ＴＥＣ

犳
２ ＋犽２

ＴＥＣ犎ｃｏｓθ

犳
３ ＋

∫犛′

（犽１
２
＋犽３）

犖犲
２

犳４
ｄ狊 （２）

式中，ρ为距离观测值，ρ＝λ（珘φ＋犖）；珘φ为载波相

位观测值；犖 为相应的整周模糊度；λ为载波波

长。ＴＥＣ＝∫犛′犖犲ｄ狊，称为总电子含量，即底面积

为一个单位面积，沿信号传播路径贯穿整个电离

层的一个柱体中所含的电子数；犎ｃｏｓθ为电离层

中信号传播路径中的犎ｃｏｓθ的平均值。严格地

讲，犳
３项中的分子部分应为犽２∫犛′犖犲犎ｃｏｓθｄ狊。由

于犎ｃｏｓθ的变化较为平缓，故文献［２］中建议先

将它们取平均，然后就可将平均值犎ｃｏｓθ从积分

号内提取出来［２］，将公式简化为：

犽２∫犛′
犖犲（犎ｃｏｓθ）ｄ狊＝犽２犎ｃｏｓθ·∫犛′

犖犲ｄ狊＝

犽２（犎ｃｏｓθ）·犜犈犆 （３）

　　实际计算时可将电离层中的信号传播路径分

为狀 等份，求出各端点上的 犎 和θ，并计算

犎ｃｏｓθ，然后取中数后即可求得 （犎ｃｏｓθ）。当

犜犈犆＝１．３８×１０１８个／ｍ２时，电离层延迟模型中

高阶项在 犔１上为２４．８ ｍｍ，在 犔２上为５２．４

ｍｍ
［３］。在太阳活动最激烈时上述数值还将增大

数倍。由此可见，忽略高阶项后对精度会产生一

定的影响。本文认为在高精度ＧＰＳ测量中，采用

顾及犳
３项的电离层延迟模型是适宜的。顾及犳

３项

时载波相位观测值（化算为距离后）的电离层改正

公式为：

狏狆 ＝犽１
ＴＥＣ

犳
２ ＋犽２

ＴＥＣ·（犎ｃｏｓθ）

犳
３

（４）

　　类似地，可导出顾及犳
３项时测码伪距观测值

的电离层延迟改正公式为：

狏犵 ＝－犽１
ＴＥＣ

犳
２ －２犽２

ＴＥＣ·（犎ｃｏｓθ）

犳
３

（５）
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　　在ＧＰＳ测量中，测距码就是以群速在电离层

中传播的。在顾及犳
３项的情况下，可采用下列两

种方法来消除电离层延迟：① 用三频观测值来消

除电离层延迟；② 直接按式（３）和式（５）来计算改

正数。

２　用三频观测值来消除电离层延迟

随着ＧＰＳ的现代化和Ｇａｌｉｌｅｏ系统的投入运

行，用户将有可能同时用３个频率的信号来进行

测距。这就为用三频观测值来消除电离层延迟提

供了可能。文献［２，６］中推导的公式不完全正确，

现重新推导如下。

顾及犳
３项时载波相位测量的观测方程为：

ρ犻 ＝犛－
犽１·ＴＥＣ

犳
２
犻

－
犽２·ＴＥＣ·（犎ｃｏｓθ）

犳
３
犻

（６）

式中，犻表示３种不同的频率，犻＝１、２、３；犛为包含

卫星钟差、接收机钟差、对流层延迟等与信号频率

无关的误差影响在内的卫地距。同样，顾及犳
３项

时测码伪距观测方程为：

ρ犻 ＝犛＋
犽１·ＴＥＣ

犳
２
犻

＋
２犽２·ＴＥＣ·（犎ｃｏｓθ）

犳
３
犻

（７）

　　为方便起见，现将式（６）、式（７）统一表示为：

ρ犻 ＝犛＋
犃

犳
２
犻

＋
犅

犳
３
犻

（８）

犃＝－犽１·ＴＥＣ，犅＝－犽２·ＴＥＣ（犎ｃｏｓθ）

犃＝＋犽１·ＴＥＣ，犅＝＋２犽２·ＴＥＣ（犎ｃｏｓθ
烍
烌

烎）

（９）

通过线性组合组成无电离层延迟观测值ρ犾，犿，狀：

ρ犾，犿，狀 ＝犾ρ１＋犿ρ２＋狀ρ３ ＝ 犾＋犿＋（ ）狀犛＋

犾

犳
２
１

＋
犿

犳
２
２

＋
狀

犳（ ）２
３

犃＋
犾

犳
３
１

＋
犿

犳
３
２

＋
狀

犳（ ）３
３

犅（１０）

显然，为了使ρ犾，犿，狀不受电离层延迟的影响，即为

了使ρ犾，犿，狀＝犛，犾、犿、狀必须满足下列条件：

犾＋犿＋狀＝１

犾

犳
２
１

＋
犿

犳
２
２

＋
狀

犳
２
３

＝０

犾

犳
３
１

＋
犿

犳
３
２

＋
狀

犳
３
３

＝

烅

烄

烆
０

（１１）

解上述方程组后可得：

犾＝７．０８０６，犿＝－２６．１３０３，狀＝２０．０４９８

即将三频距离观测值按下列方式线性组合后就可

消除电离层延迟：

ρ犾，犿，狀 ＝７．０８０６ρ１－２６．１３０３ρ２＋２０．０４９８ρ３

（１２）

式（１２）与文献［４］中导出的结果完全一致。

虽然从理论上讲，在顾及犳
３项的情况下，用式

（１２）的线性组合即可消除电离层延迟，但由于原

始观测值前所乘的系数很大，故线性组合观测值

的测量噪声将放大几十倍。假设载波相位观测值

的测量噪声为波长的百分之一，即狊犔
１
＝±１．９０

ｍｍ，狊犔
２
＝±２．４４ｍｍ，σ犔

３
＝±２．５５ｍｍ，则无电

离层延迟组合观测值的测量噪声为：

σρ犾，犿，狀 ＝±８２．８４ｍｍ （１３）

从而严重污染线性组合观测值，影响定位精度。

需要１７１６个观测值取平均后才能将测量噪声降

低至±２ｍｍ的水平。当采样间隔为１５ｓ时需费

时７ｈ９ｍｉｎ。只有当载波相位测量的测量噪声达

到±０．２ｍｍ左右，采样率又很高时这种方法才

有实际应用价值。

３　直接计算法

３．１　计算犳
３项

在式（７）、式（８）的犳
３项中，犽２为常系数，犳为

信号频率，皆为已知数。ＴＥＣ值则可近似地用双

频观测值来确定［４，５］。由于犳
３项的数值很小，最

大也仅为几ｃｍ，比犳
２项小３个数量级左右，故根

据双频观测值，在仅顾及犳
２项的情况下所求得的

ＴＥＣ值可满足计算犳
３项时的精度要求，无需进行

迭代计算。于是计算犳
３项的关键就在于计算信号

传播路径上各点的地磁场场强矢量犎


犻及其与卫

星信号传播方向间的夹角θ犻，然后计算平均值

犎ｃｏｓθ。

地磁场是一个重要的地球物理场，由地核场

（也称主磁场，其值约占整个磁场的９５％）、地壳

场（也称局部磁场，其值约占总磁场的４％）和外

源变化磁场（其值约占总磁场的１％）三个部分组

成，前两部分合称稳定磁场。地核场将随时间而

缓慢变化。其主要特性是整体向西漂移，漂移速

度约为０．２°／ａ。局部磁场则几乎不随时间而变

化。外源变化场虽会随时间迅速变化，但由于其

值较小，因而从总体上讲地磁场的时空变化还是

较有规律的，可用一个数学模型来描述。该模型

通常采用球谐函数的形式。主磁场的标量位犝

可表示为：

犝＝犪∑
∞

狀＝１
∑
狀

犿＝０

犪（ ）狉
狀＋１

犘犿狀（θ）（犵
犿
狀ｃｏｓ犿λ＋犺

犿
狀ｓｉｎ犿λ）

（１４）

式（１４）中的犪为地球平均半径，通常取６３７１．１

ｋｍ；狉为计算点至地心的距离；犵
犿
狀和犺

犿
狀为球谐函

数的系数，其值由相应的地磁场模型给出；狀和犿

０４１
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分别为球谐函数的阶和次；λ为计算点的经度；θ

为计算点的余纬度，即θ＝９０°－φ，φ为计算点的

地心纬度；犘犿狀（θ）为狀阶犿 次的缔合勒让德尔函

数，可用递推法计算。国际地磁学与高层大气物

理学协会（ＩＡＧＡ）每５ａ给出一个国际地磁参考

场（ＩＧＲＦ）模型。目前正在使用的是ＩＧＲＦ２００５

模型。可根据地磁场模型求得卫星信号传播路径

上各点的站心坐标场强矢量犎
［４］。

犎＝犎犡犢犣 ＝犚·犎犖犈犝 （１５）

犚为坐标旋转变换矩阵，于是可求得场强矢量犎

与信号传播方向间的夹角θ为：

θ＝ａｒｃｃｏｓ
犎·犔
犎 · 犔

（１６）

犔为站星方向矢量。求得信号传播路径上各点的

犎和θ后，即可算出平均值（犎ｃｏｓθ）。实际计算

时可将电离层中的传播路径分为狀等份，求出各

端点的犎和θ，取平均后得（犎ｃｏｓθ），最后求得犳
３

项。为方便起见，将犳
３项记为δ：

δ＝

－
犽２ＴＥＣ（犎ｃｏｓθ）

犳
３

，载波相位观测值

＋
２犽２ＴＥＣ（犎ｃｏｓθ）

犳
３

，
烅

烄

烆
测码伪距观测值

（１７）

３．２　顾及犳
３项时的电离层延迟改正公式

求得犳
３项后，即可将式（７）改写为：

（ρ１－δ１）＝犛－
犽１ＴＥＣ

犳１
２

（ρ２－δ２）＝犛－
犽１ＴＥＣ

犳２
２

（１８）

从而求得：

犛＝２．５４５７３λ１（珘φ１＋犖１）－１．５４５７３λ２（珘φ２＋

　犖２）－（２．５４５７３δ１－１．５４５７３δ２） （１９）

　　从式（１９）可以看出，顾及犳
３项时电离层延迟

改正公式与通常所用的仅顾及犳
２项的改正公式之

差就在于增加了一个改正项－（２．５４５７３δ１－

１．５４５７３δ２）。式（１９）也适用于测码伪距观测值，

但δ的定义与载波相位观测值不同。采用这种方

法时只需用双频观测值就可消除含犳
３项的电离层

延迟，但需要提供地磁场场强犎的模型。

４　简化模型

４．１　用某一特定高程处的犎犮狅狊θ来替代平均值

犎犮狅狊θ

从上面的讨论可知，计算犳
３项的关键是计算

∫犛′犖犲犎ｃｏｓθｄ狊的值。参考文献［２］中的信号传播

路径均匀分为狀等份，求出各端点上的犎ｃｏｓθ值

并取中数得犎ｃｏｓθ，然后将其提到积分号外，将公

式简化为：

∫犛′
犖犲犎ｃｏｓθｄ狊＝∫犛′

犖犲（犎ｃｏｓθ）ｄ狊＝ （犎ｃｏｓθ）·

∫犛′
犖犲ｄ狊＝ＴＥＣ·（犎ｃｏｓθ）

但由于不同高度处的电子密度 犖犲 相差１０倍以

上，故上述方法不但计算复杂，且并不严格。本文

试图寻找某一特定高度 犎，使该高度处的 犎０

ｃｏｓθ０与犜犈犆 的乘积能与∫犛′
犖犲犎ｃｏｓθｄ狊较为吻

合，即∫犛′
犖犲犎ｃｏｓθｄ狊≈ＴＥＣ·犎０ｃｏｓθ０。

据Ｃｈａｐｍａｎ公式，任一高度处的电子密度

犖犲与最大电子密度犖犿 间有下列关系：

犖犲 ＝犖犿·ｅ
（１－狕－犲

－狕） （２０）

其中，狕＝（犺－犺犿）／犎狊，经大量计算后得出下列结

果：若电子密度在犺犿 处取极大值，则当犎狊＝犺犿－

２０ｋｍ 时，所求得的 犎０ｃｏｓθ０能与加权平均值

狆犎ｃｏｓ相符最好。例如当电子密度在３７０ｋｍ处

取得极大值时，则用犺犿＝３５０ｋｍ处的传播路径

上的点所求得的犎０ｃｏｓθ０值就能与传播路径上的

加权平均值很好地相符。其差异对计算犳
３项的影

响一般为０．３ｍｍ，最大不超过０．５ｍｍ。上述公

式适合于中纬度地区。

图１　拟合区域中的场强矢量分量

Ｆｉｇ．１　ＣｏｍｐｏｎｅｎｔｓｏｆＦｉｅｌｄＳｔｒｅｎｇｔｈＶｅｃｔｏｒｉｎＦｉｔｔｉｎｇＡｒｅａ

１４１
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４．２　用三次多项式替代球谐函数

用球谐函数来描述全球的地磁场模型时有许

多优点，但绝大多数用户在实际应用时仅涉及局

部区域，此时用一些简单的数学模型也能得到很

好的效果。用拟合范围为北纬１５°～４５°、东经

１００°～１４０°的一个３０°×４０°的矩形区间进行实

验。高度为犺犿 的地磁场场强矢量的３个分量均

用三次多项式来进行拟合：

犳（狓，狔）＝∑
３

犻＝０
∑
３

犼＝０

犪犻犼狓
犻
狔
犼 （２１）

式中，狓＝犅－３０°，狔＝犔－１２０°。由于没有该区域

及周边地区的地磁台站长期的观测资料，故无法

从原始地磁观测资料出发来建立该区域的地磁场

模型。一个较为简单而实用的方法是从ＩＧＲＦ

２００５模型出发，用球谐函数计算出该区域内２°×

２°格网点上的场强矢量犎，然后再用式（２１）分别

拟合这些格网点上的场强分量犎狓、犎狔、犎狕。

从图１中可以看出，各场强分量的变化还是

较为规则平缓的，可以分别用一个三次曲面来加

以拟合。

图２给出了６号卫星用球谐函数所求得的电

离层延迟与用拟合后的三次曲面模型所求得的电

离层延迟之差。可以看出，用三次曲面模型所求

得的场强矢量犎 来计算电离层延迟所造成的误

差均小于０．５ｍｍ。

图２　用两个模型所求得的电离层延迟之差

Ｆｉｇ．２　ＤｉｆｆｅｒｅｎｃｅｓＢｅｔｗｅｅｎＴｗｏＩｏｎｏｓｐｈｅｒｉｃＤｅｌａｙｓ

ＤｅｔｅｒｍｉｎｅｄｂｙＳｐｈｅｒｉｃａｌＨａｒｍｏｎｉｃｓ

ＭｏｄｅｌａｎｄＳｕｒｆａｃｅＦｉｔｔｉｎｇＭｏｄｅｌ

５　结　语

１）电离层延迟模型中的犳
３ 项的数值可达数

ｃｍ，在高精度ＧＰＳ测量以及用ＧＰＳ观测值来建

立ＶＴＥＣ模型时最好予以顾及。

２）利用三频观测值的线性组合可消除电离

层延迟（含犳
３ 项在内），但由于组合观测值的测量

噪声被放大数十倍，因而一般并不实用。该方法

只有在原始载波相位观测值的测量噪声很小、采

样率很高时才有实际应用的可能。

３）直接用地磁场模型来计算场强矢量犎，进

而求得犳
３ 项是解决问题的另一种方法，且只需双

频观测值即可。但由于犳
３ 项本身的数值不大，计

算却很复杂，因而未被广泛应用。

４）本文提出的简化方法不但可大大减少计

算工作量，而且方法也更为合理。一旦曲面拟合

模型建立后，该区域内的所有用户就都能用一个

简单的数学模型来进行计算了，简化模型所引起

的误差可保持在０．５ｍｍ以内。
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