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摘　要：基于重力场信号的频谱特性建立了ＳＳＴｈｌ加速度计和星载ＧＰＳ等有效载荷的解析误差分析模型。

以ＣＨＡＭＰ卫星的相关技术指标为例，对卫星高度、加速度计精度和ＧＰＳ定轨精度等技术指标与恢复重力

场的性能作了模拟分析。将模拟分析结果与ＥＧＭ９６和ＥＩＧＥＮＣＨＡＭＰ０３Ｓ模型进行了比较，验证了解析模

拟分析模型的有效性。
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　　重力卫星以其快速、高效和几乎全球覆盖的

特性，在确定重力场方面正发挥着重要的作用。

鉴于重力卫星重要的科学价值和国防需要，尽快

跟踪和开展卫星重力探测技术的研究，发射我国

自主的重力卫星已是发展所需［１，２］。当前，我国

发展重力卫星系统的首要任务是开展相关技术指

标的设计与论证工作。近年来，国内外许多学者

基于高低卫卫跟踪模式研究了利用卫星星历观

测值和加速度数据恢复地球重力场的方法［３７］，并

讨论了卫星轨道误差和加速度计误差对恢复地球

重力场的影响［８１０］，这些研究成果为重力卫星关

键有效载荷的指标设计与论证提供了参考。在利

用ＳＳＴ技术研究地球重力场引力位时，往往需要

在频域内讨论信号的特性［１１，１２］。本文采用解析

方法建立了ＳＳＴｈｌ模式关键有效载荷的误差分

析模型，对卫星高度、加速度计精度和ＧＰＳ定轨

精度等指标进行了模拟分析与验证。

１　模拟分析模型的建立

１．１　加速度计误差分析模型

非保守力中，量级最大的为大气阻力，而大气

阻力引起的摄动加速度是由加速度计切向的分量

犪犜测得的，因此，非保守力耗散能Δ犆采用如下公

式［４］近似计算：

Δ犆＝∫
狋

狋
０

狘狏狘犪犜ｄ狋 （１）

式中，｜狏｜为卫星速度矢量的模。由式（１）可得，

因加速度计切向误差ｄ犪犜而产生的耗散能误差的

近似公式为：

ｄΔ犆＝犜·狘珘狏狘犱犪犜 （２）

式中，犜为积分时间；珘狏为平均速度。

将耗散能误差ｄΔ犆视为卫星的位能差ｄ犞，

并注意ｄ犞 与摄动位犚 有相同的功率谱，由式（２）

可得到犚的功率谱与ｄ犪犜 的误差谱的关系为：

∨
２
狀｛犚｝＝犜

２
狘珘狏狘

２
∨
２
狀｛ｄ犪犜｝ （３）

而大地水准面高犖 与犚 的功率谱关系为
［１２］：

∨
２
狀｛犖｝＝

狉２

γ犲犌犕

狉
犪（ ）
犲

２狀

∨
２
狀｛犚｝ （４）

其中，犪犲为地球赤道平均半径；狉为卫星质心到地

心的距离；γ犲为赤道处的正常重力；犌犕 为地心引

力常数。将式（３）代入式（４），并假设卫星绕地球

以速度珘狏作圆周运动，则可得ＳＳＴｈｌ模式因加速

度计切向误差而引起的大地水准面高的误差谱

为：

σ
２
狀｛犖｝

ｈｌ
犪犜 ＝

犜２狉

γ犲
· 狉
犪（ ）
犲

２狀σ
２
犪犜

犖ｍａｘ

（５）
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式中，σ
２
犪犜
为加速度计切向误差的方差；犖ｍａｘ为根

据Ｎｙｑｕｅｓｔ频率准则获得的地球重力场模型的最

高阶数，其近似公式为：

犖ｍａｘ＝
π

δ狋
犪３

槡犌犕 （６）

其中，犪为卫星轨道的长半轴；δ狋为采样时间间

隔。

类似可推导加速度计径向测量误差ｄ犪犚 对恢

复重力场影响的解析关系式。因ｄ犪犚 而使卫星产

生的位能差ｄ犞 为：

ｄ犞 ＝ｄ犪犚·狉 （７）

　　与式（５）的推导过程类似，直接给出ＳＳＴｈｌ

模式因ｄ犪犚 而引起的大地水准面高的误差谱公

式：

σ
２
狀｛犖｝

ｈｌ
犪犚 ＝

狉４

γ犲犌犕

狉
犪（ ）
犲

２狀σ
２
犪犚

犖ｍａｘ

（８）

其中，σ
２
犪犚
为加速计径向误差的方差。

１．２　犌犘犛定轨误差分析模型

ＳＳＴｈｌ的定轨精度主要受径向轨道误差的

影响。地球重力场引力位犞 可表达为
［１１］：

犞 ＝
犌犕
狉
［１＋∑

２

犫＝１
∑
犖

狀＝２
∑
狀

犿＝０

（犪犲
狉
）狀犆犫狀犿犢犫狀犿］（９）

式中，

犢犫狀犿 ＝
犘狀犿（ｓｉｎ）ｃｏｓ犿λ，犫＝１

犘狀犿（ｓｉｎ）ｓｉｎ犿λ，犫＝
｛ ２

（１０）

犆犫狀犿 ＝
犆狀犿，犫＝１

犛狀犿，犫＝
｛ ２

（１１）

其中，、λ为空间点的地心纬度与经度；犘狀犿（ｓｉｎ）

为缔合勒让德函数；犆狀犿、犛狀犿为地球引力位系数；

犖 为引力位球谐展开的最高截断阶次，最高阶次

犖 所对应的空间分辨率犇（半波长）为：

犇≈２００００／犖 （１２）

　　由式（９）可得：

犞

狉
＝－
犌犕

狉２
１＋∑

２

犫＝１
∑
犖

狀＝２

（狀＋１）（
犪犲
狉
）狀∑

狀

犿＝０

犆犫狀犿犢［ ］犫狀犿

（１３）

基于Ｋａｕｌａ规则，可得犞 与狉的功率谱关系为：

∨
２
狀｛犞｝

∨
２
狀 ｛ ｝狉

＝
犌犕

狉（ ）２

２

［１＋（狀＋１）
２ 犪犲（ ）狉

２狀

·

１．６×１０
－１０狀－３］ （１４）

　　因犞 与犚 具有一致的功率谱，由式（１４）可

得犚与径向轨道误差σ狉的误差谱关系为：

∨
２
狀｛犚｝＝

犌犕

狉（ ）２

２

［１＋（狀＋１）
２ 犪犲（ ）狉

２狀

·

１．６×１０
－１０狀－３］

σ
２
狉

犖ｍａｘ

（１５）

将式（１５）代入式（４），可得ＳＳＴｈｌ模式由于径向

轨道误差导致恢复大地水准面高的误差谱为：

σ
２
狀｛犖｝

ｈｌ
ＧＰＳ＝

犌犕

狉２γ犲

狉
犪（ ）
犲

２狀

＋（狀＋１）
２［ ·

１．６×１０
－１０狀－ ］３ σ

２
狉

犖ｍａｘ

（１６）

式中，σ
２
狉为径向轨道误差的方差。

１．３　观测时间跨度对恢复重力场的影响

在利用ＳＳＴ测量数据恢复地球重力场时，

ＳＳＴ星下点至少需要完成一个比较均匀的地面

覆盖。若采用最短运行天数（犽天）内的ＳＳＴ观

测数据可以恢复一定精度的地球重力场模型，那

么根据误差传播定律可粗略地估计出当采用

ＳＳＴ观测数据的时间跨度为最短运行天数的犿

倍时，其恢复地球重力场模型的精度大约可提高

槡犿倍
［７，９］。

１．４　犛犛犜犺犾误差分析模型

ＳＳＴｈｌ模式的关键有效载荷为星载加速度

计和星载ＧＰＳ接收机，其相应的主要有效载荷恢

复大地水准面高的噪声谱为：

σ
２
狀｛犖｝ｈｌ＝σ

２
狀｛犖｝

ｈｌ
犪犜 ＋σ

２
狀｛犖｝

ｈｌ
犪犚 ＋σ

２
狀｛犖｝

ｈｌ
ＧＰＳ

（１７）

于是可近似地估计ＳＳＴｈｌ模式任意阶及累积到

犔阶的大地水准面高的误差分别为：

σ｛犖｝
狀
ｈｌ＝ σ

２
狀｛犖｝槡 ｈｌ，σ｛犖｝

犔
ｈｌ＝ ∑

犔

狀＝２

σ
２
狀｛犖｝槡 ｈｌ

（１８）

２　模拟分析与验证

２．１　加速度计分析

由于加速度计存在测量误差，其误差会对积

分轨道造成影响，进而导致解算的重力场模型的

位系数产生误差，因此，为了避免加速度计测量误

差的累积效应，轨道积分弧段不宜太长。本文适

中地选取２．４ｈ的积分弧段作计算分析。表１给

出了不同切向与径向加速度计误差对恢复大地水

准面的影响值（４５０ｋｍ卫星高度、１０ｓ采样间隔、

２．４ｈ的积分弧长、１８０天时间跨度的数据）。

从表１可以看出，当加速度计切向与径向精

度相同时，切向２．４ｈ积分弧长累积的大地水准

面误差约为径向的１０倍；当加速度计切向精度高

于径向精度１个量级时，切向２．４ｈ积分弧长累

积的大地水准面误差与径向大致相当。由于

ＣＨＡＭＰ卫星装载的加速度计径向精度约为１．０

×１０－８ｍ／ｓ２，而切向和法向精度约为１．０×１０－９

ｍ／ｓ２，因此从表１模拟的结果看，在利用ＣＨＡＭＰ

５６８
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表１　加速度计切向和径向误差对恢复

大地水准面的影响

Ｔａｂ．１　ＣｕｍｕｌａｔｉｖｅＧｅｏｉｄＥｒｒｏｒｓＶａｒｙｗｉｔｈ

ＤｉｆｆｅｒｅｎｔＴａｎｇｅｎｔｉａｌａｎｄＲａｄｉａｌＡｃｃｕｒａｃｉｅｓｏｆＡＣＣ

加速度计精度

／ｍ·ｓ－２
４０阶 ８０阶 １２０阶

１．０×１０－７ ０．５８６ ８．９８０ １３７．２９３

切向／ｍ １．０×１０－８ ０．０５９ ０．８９８ １３．７２９

１．０×１０－９ ０．００６ ０．０９０ １．３７３

１．０×１０－７ ０．０６１ ０．９２９ １４．２０１

径向／ｍ １．０×１０－８ ０．００６ ０．０９３ １．４２０

１．０×１０－９ ０．０００６ ０．００９ ０．１４２

卫星短弧（积分时间少于２．４ｈ）数据恢复重力场

时，不能忽略加速度计径向误差的影响。

图１（ａ）为不同星载加速度计精度（假设切向

与径向精度相同）对恢复大地水准面影响的累积

误差图（ＳＳＴｈｌ模式、卫星高度４５０ｋｍ、ＧＰＳ定

轨精度５ｃｍ、采样间隔１０ｓ、时间跨度为９０ｄ、

２．４ｈ的积分弧长）。从图１（ａ）可以看出，提高加

速度计精度对恢复地球重力场有利，但每提高一

个数量级的加速度计精度不会带来等量级重力场

精度的提高。当ＧＰＳ定轨精度为５ｃｍ时，高于

１．０×１０－９ｍ／ｓ２的加速度计精度对恢复重力场精

度的作用已不明显，因为ＧＰＳ定轨精度与加速度

计精度之间存在一定的精度匹配关系，只有同时

提高它们的精度，才能达到提高恢复重力场精度

的目的。

２．２　星载犌犘犛分析

图１（ｂ）为不同ＧＰＳ定轨精度对恢复大地水

准面影响的累积误差图（ＳＳＴｈｌ模式、卫星高度

４５０ｋｍ、星载加速度计切向与径向精度为１．０×

１０－９ｍ／ｓ２、采样间隔１０ｓ、时间跨度为９０ｄ、２．４ｈ

的积分弧长）。

从图１（ｂ）可以看出，提高星载ＧＰＳ定轨的

精度对恢复地球重力场有利，当ＧＰＳ定轨精度从

１０ｃｍ提高到５ｃｍ时，其恢复地球重力场精度的

量级不大，但当ＧＰＳ定轨精度从５ｃｍ提高到１

ｃｍ时，其对恢复地球重力场精度有较大幅度的提

高。这说明轨道误差对恢复地球重力场的影响较

大，如果能将ＧＰＳ定轨精度提高到５ｃｍ以内，将

极大地提高ＳＳＴｈｌ系统恢复地球重力场的性能。

因此，精密定轨技术是ＳＳＴｈｌ系统恢复高精度地

球重 力 场 的 关 键 技 术 之 一。另 外，肖 云［９］、

Ｍｏｏｒｅ
［１０］等学者的模拟结果也表明，ＧＰＳ定轨误

差对ＳＳＴｈｌ模式恢复地球重力场的影响非常大，

这与本文的模拟结果相符合。

２．３　卫星高度分析

图１（ｃ）为不同卫星高度对恢复大地水准面

影响的累积误差图（ＳＳＴｈｌ模式、星载加速度计

切向与径向精度为１．０×１０－９ｍ／ｓ２、ＧＰＳ定轨精

度为５ｃｍ、采样间隔１０ｓ、时间跨度为９０ｄ、２．４ｈ

的积分弧长）。

由图１（ｃ）可以看出，轨道高度降低对ＳＳＴ系

统恢复重力场的性能有利，并且高阶次位系数对

轨道高度的变化更加敏感，因此，降低轨道高度可

提高恢复高阶次重力场位系数的精度。但轨道高

度的选择并不是越低越好，轨道降低后，由于大气

密度的增加会加大加速度计测定非保守力的误差

和减短卫星运行的寿命，从而影响了ＳＳＴ的测量

性能。因此，需要结合重力卫星任务的科学目标

和载荷的设计水平等因素来提出对轨道高度的要

求。

２．４　模拟结果的验证

本文设计了３种模拟实验，其模拟的卫星高

度为４５０ｋｍ，采样间隔为１０ｓ，时间跨度为３６０

ｄ，积分时间为２．４ｈ，三种模拟实验的ＧＰＳ精度

分别为１０ｃｍ、５ｃｍ、１ｃｍ；ＡＣＣ精度分别为１．０

×１０－８ｍ／ｓ２、１．０×１０－９ｍ／ｓ２、１．０×１０－１０ｍ／ｓ２。

图２给出了以上三种模拟实验恢复大地水准

面的累积误差，以及 ＥＧＭ９６ 模型和 ＧＦＺ 的

ＥＩＧＥＮＣＨＡＭＰ０３Ｓ模型相应的大地水准面累

积误差。从图２可以看出，模拟实验２恢复地球

重力场的精度在９０阶前与ＥＩＧＥＮＣＨＡＭＰ０３Ｓ

模型 的 精 度 非 常 接 近，并 且 其 技 术 指 标 与

ＣＨＡＭＰ卫星最为接近。上述结果初步表明，本

文建立的解析模拟分析模型可以用于对ＳＳＴｈｌ

的主要技术指标进行定性和定量的分析，其分析

结果基本符合ＣＨＡＭＰ卫星在轨的实测数据。

３　结　语

本文基于重力场信号的频谱特性建立的

ＳＳＴｈｌ加速度计、星载 ＧＰＳ等有效载荷的解析

误差分析模型，具有表达简洁、物理意义明显和简

化计算的特点。通过对卫星高度、加速度计精度

和ＧＰＳ定轨精度等技术指标的模拟分析与验证，

表明了该模型可以用于ＳＳＴｈｌ主要技术指标的

定性和定量分析，可为我国发展ＳＳＴ重力探测卫

星主要技术指标的初步设计提供参考。
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图１　各种因素对恢复大地水准面的影响（ＳＳＴｈｌ）

Ｆｉｇ．１　ＣｕｍｕｌａｔｉｖｅＧｅｏｉｄＥｒｒｏｒｓＶａｒｙｗｉｔｈ

ＳｉｍｕｌａｔｅｄＲｅｓｕｌｔｓａｎｄＣｏｍｐａｒｉｓｏｎＭｏｄｅｓ

　　　　　
图２　模拟结果的比较

Ｆｉｇ．２　Ｃｏｍｐａｒｉｓｏｎｏｆ

ＳｉｍｕｌａｔｅｄＲｅｓｕｌｔｓ
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