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摘　要：研究了最小二乘估值均方差计算的矩阵体积法，该方法无需计算最小二乘估值，其数值计算的稳定性

较好，可在最小二乘解算前对系统的观测结构、函数模型的准确性和观测数据质量进行评价。
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　　最小二乘估值均方差计算在测量中有着重要

应用，它综合反映了系统的观测结构、函数模型的

准确性、观测数据质量等［１４］，是最小二乘精度评

定的重要内容。在理论上，最小二乘估值均方差

计算与最小二乘解算过程无关；在某些实际问题

中，需要在最小二乘解算前对其最小二乘估值的

精度进行评定，以达到事前对系统观测结构、函数

模型的准确性和观测数据质量进行评价的目的。

特别地，对于病态问题，最小二乘估值均方差的经

典计算公式的数值计算的稳定性严重受制于最小

二乘估值数值计算的稳定性［３］，其计算结果变得

很不可靠。本文基于 Ｈｉｌｂｅｒｔ空间几何学和矩阵

体积的概念，提出了一种最小二乘估值均方差计

算的矩阵体积法。

１　线性最小二乘问题

记犚（·）为矩阵的值域空间
［５］，犇（·）为矩

阵列向量构成的超平行体［６］，ｄｅｔ（·）为方阵行列

式［５］，‖·‖为矩阵的范数
［５７］，‖·‖犉为矩阵的

Ｆｒｏｂｅｎｉｕｓ范数
［５］，‖·‖Ω为矩阵的 Ｍａｈａｌａｎｏ

ｂｉｓ范数
［５］；‖·‖２为向量的欧氏范数

［５７］。由

Ｈｉｌｂｅｒｔ空间理论可知
［７］，对于线性方程组系数矩

阵犃∈犚
犿×狀和向量犔∈犚

犿×１，惟一存在犔^∈犚（犃），

使得：

‖犔－犔^‖２ ＝ ｉｎｆ
狔∈犚（犃）

‖犔－狔‖２ （１）

式中，^犔为犔在值域空间犚（犃）中的最小二乘逼近

元。由投影定理可知：

犔＝犔^＋犞 （２）

其中，犞∈犚（犃）⊥，且该正交分解惟一。犔到值域

空间犚（犃）的投影算子犑犃为
［１，５，７］：

犑犃 ＝犃（犃
Ｔ犘犃）－１犃Ｔ犘 （３）

其中，正定矩阵犘 为空间具有概率意义的测

度［１，８］。对应最小二乘估计，由式（３）可知：

犔^＝犃（犃
Ｔ犘犃）－１犃Ｔ犘犔 （４）

犞＝ 犐－犃（犃
Ｔ犘犃）－１犃Ｔ（ ）犘犔 （５）

则超定方程组犃狓＝犔的最小二乘解为：

狓^＝ （犃
Ｔ犘犃）－１犃Ｔ犘犔 （６）

最小二乘单位权中误差的计算公式为［１］：

σ^０ ＝ 犞Ｔ犘犞／（犿－狀槡 ） （７）

最小二乘解狓^的均方差计算公式为：

σ^^狓 ＝ ｔｒ（犙^狓槡 ）^σ０ （８）

其中，犙^狓＝（犃
Ｔ犘犃）－１。

２　矩阵体积和广义伴随矩阵

２．１　矩阵体积的定义

对于矩阵犃∈犚
犿×狀，其狆维体积ｖｏｌ狆（犃）为：

ｖｏｌ狆（犃）＝ ‖犆狆（犃）‖ （９）

其中，犆狆（犃）为矩阵犃的狆 阶复合矩阵
［４，５，９］。若
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定义采用Ｆｒｏｂｅｎｉｕｓ范数，则称其为矩阵犃的狆

维欧氏体积［１０，１１］，记为ｖｏｌ狆（犃）犉；若定义采用

Ｍａｈａｌａｎｏｂｉｓ范数，称其为矩阵犃的狆 维马氏体

积，记为ｖｏｌ狆（犃）Ω。

由ＢｉｎｅｔＣａｕｃｈｙ定理可得，若犃∈犚
犿×狀，犅∈

犚狀×狊，则：

犆狆（犃犅）＝犆狆（犃）犆狆（犅） （１０）

其中，狆≤ｍｉｎ｛犿，狀｝。当狊＝犿，狆＝狀时，Ｂｉｎｅｔ

Ｃａｕｃｈｙ推广定理退化为ＢｉｎｅｔＣａｕｃｈｙ定理，即

ｄｅｔ（犅犃）＝犆狀（犅）·犆狀（犃） （１１）

　　对于矩阵犃∈犚
犿×狀，矩阵的狀维马氏体积满

足：

ｖｏｌ狀（犃）Ω ＝ ｄｅｔ（犃Ｔ犘犃槡 ） （１２）

其中，Ω＝犆狀（犘）。式（１２）可由式（１０）和式（１１）导

出。当犘＝犐时，矩阵的马氏体积退化为矩阵的

欧氏体积，其几何意义为超平行体 犇（犃）的体

积［１０，１２，１３］。

２．２　矩阵欧氏体积的几何意义

矩阵的欧氏体积ｖｏｌ狆（犃）犉的几何意义为超

平行体犇（犃）
［１０］大小的度量。设矩阵犃∈犚

犿×狀，

其狀维欧氏体积为：

犞狀（犇（犃））＝ｖｏｌ狀（犃）犉 ＝ ｄｅｔ（犃Ｔ犃槡 ）

犽维空间内的欧氏体积（与平行体犇（犃）的“表面

积”相关）满足：

犞犽 犇（犃（ ））＝ｖｏｌ犽（犃）犉 ＝２
狀－犽
‖犇犽（犃）‖犉

２．３　任意矩阵的伴随矩阵

对于矩阵犃∈犚
犿×狀，其狆阶伴随矩阵定义为：

犆狆 （犃）＝

犑狀１犆狆（犃
Ｔ）犑犿１，犆狆狀为奇数，犆狆犿为奇数

犑狀１犆狆（犃
Ｔ）犑犿２，犆狆狀为奇数，犆狆犿为偶数

犑狀１犆狆（犃
Ｔ）犑犿１，犆狆狀为偶数，犆狆犿为奇数

犑狀１犆狆（犃
Ｔ）犑犿２，犆狆狀为偶数，犆狆犿

烅

烄

烆 为偶数

或

犆狆
（犃）＝

犑狀２犆狆（犃
Ｔ）犑犿２，犆狆狀为奇数，犆狆犿为奇数

犑狀２犆狆（犃
Ｔ）犑犿１，犆狆狀为奇数，犆狆犿为偶数

犑狀２犆狆（犃
Ｔ）犑犿２，犆狆狀为偶数，犆狆犿为奇数

犑狀２犆狆（犃
Ｔ）犑犿１，犆狆狀为偶数，犆狆犿

烅

烄

烆 为偶数

其中，

犑狀１ ＝

１

－１



（－１）
犆
狆
狀－

熿

燀

燄

燅１

∈犚
犆
狆
狀×犆

狆
狀

犑狀２ ＝

－１

１



（－１）
犆
狆

熿

燀

燄

燅狀

∈犚
犆
狆
狀×犆

狆
狀

犑犿１ ＝

１

－１



（－１）
犆
狆
犿－

熿

燀

燄

燅１

∈犚
犆
狆
犿×犆

狆
犿

犑犿２ ＝

－１

１



（－１）
犆
狆

熿

燀

燄

燅犿

∈犚
犆
狆
犿×犆

狆
犿

　　考虑到Ｆｒｏｂｅｎｉｕｓ范数和 Ｍａｈａｌａｎｏｂｉｓ范数

的正交不变性：

ｖｏｌ狆（犃）犉 ＝ 犆狆 （犃）犉 （１３）

ｖｏｌ狆（犃）Ω ＝ 犆狆 （犃）Ω
（１４）

由ＢｉｎｅｔＣａｕｃｈｙ定理可得：

犆狆 （犃犅）＝犆

狆 （犅）犆


狆 （犃） （１５）

若犿＝狀，可以证明
［１４］：

犆狀－１（犃）＝犃
 （１６）

其中，犃为矩阵犃的古典伴随矩阵。若ｒａｎｋ（犃）

＝狀，则犃－１＝犃／ｄｅｔ（犃）。

３　最小二乘解均方差估计的矩阵体

积法

３．１　单位权中误差的矩阵体积表示

若犃∈犚
犿×狀，且犿＞狀，记犅＝［ ］犃 犫 为系数

矩阵犃 的增广矩阵，则：

σ^０ ＝
１

犿－槡 狀

ｖｏｌ狀＋１（犅）Ω１
ｖｏｌ狀（犃）Ω

（１７）

其中，Ω１＝犆狀＋１（犘）。

对式（１７）简要证明如下。由题设可得：

犅Ｔ犘犅＝
犃Ｔ犘

犫Ｔ
［ ］
犘
［ ］犃 犫 ＝

犃Ｔ犘犃 犃Ｔ犘犫

犫Ｔ犘犃 犫Ｔ
［ ］

犘犫

（１８）

　　由于ｒａｎｋ（犃）＝狀，在式（１８）两边同乘以矩阵

犆＝
犐狀×狀 ０

－犫Ｔ犘犃（犃Ｔ犘犃）－１
［ ］

１
，得：

犆犅Ｔ犘犅 ＝
犃Ｔ犘犃 犃Ｔ犘犫

０ 犫Ｔ犘犫－犫
Ｔ犘犃（犃Ｔ犘犃）－１犃Ｔ

［ ］
犘犫

ｄｅｔ（犆）＝１ （１９）

由式（１９）可得：

ｄｅｔ（犆犅Ｔ犘犅）＝

ｄｅｔ（犃Ｔ犘犃）（犫Ｔ（犘－犘犃（犃
Ｔ犘犃）－１犃Ｔ犘）犫）

（２０）

由式（２０）可得：

ｄｅｔ（犅Ｔ犘犅）

ｄｅｔ（犃Ｔ犘犃）
＝犫

Ｔ（犘－犘犃（犃
Ｔ犘犃）－１犃Ｔ犘）犫＝

７０１１
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犞Ｔ犘犞 （２１）

由式（７）、式（１９）和式（２１）即可得到式（１７）。

若犘＝犐，则
ｖｏｌ狀＋１（犅）Ω１
ｖｏｌ狀（犃）Ω

的几何意义为超平行

体犇（犅）到底面犇（犃）上的高，即向量犫的终点到

底面犇（犃）的欧氏距离。

３．２　最小二乘解均方差的矩阵体积表示

由式（１２）至式（１４）可得权逆阵 犙^狓的广义伴

随矩阵为：

犙^狓 ＝ （犃
Ｔ犘犃）－１

犆狀－１（犃）
Ｔ犆狀－１（犘）犆


狀－１（犃）

ｖｏｌ狀
２（犃）Ω

（２２）

结合式（１０）可得：

σ^^狓 ＝
犆狀－１（犃）Ω２

ｖｏｌ狀（犃）Ω
σ^０ （２３）

其中，Ω２＝犆

狀－１（犘）。由式（１４）和式（２３）可得：

σ^^狓 ＝
ｖｏｌ狀－１（犃）Ω２
ｖｏｌ狀（犃）Ω

σ^０ （２４）

将式（２２）代入式（２４）可得：

σ^^狓 ＝
ｖｏｌ狀－１（犃）Ω２ｖｏｌ狀＋１（犅）Ω１

犿－槡 狀ｖｏｌ２狀（犃）Ω
（２５）

式中，ｖｏｌ狀－１（犃）Ω２／ｖｏｌ狀（犃）Ω只与系数矩阵和权阵

有关，反映了系统的观测结构，在导航定位领域，

它与定位图形的ＧＤＯＰ值相关
［１５］，其几何意义为

超平行体犇（犃）在狀－１维空间中的马氏体积（与

其在狀－１维空间中的“表面积”相关）与其在狀维

空间中的马氏体积的比值。

４　应用及其数值算例

算例１　利用文献［１６］中的 Ｈｉｌｂｅｒｔ矩阵（为

病态矩阵）构造系数矩阵犃为：

犃＝

Ｈｉｌｂ（３）

８７

１５７
Ｈｉｌｂ（３

熿

燀

燄

燅
）

其中，Ｈｉｌｂ（３）表示３阶Ｈｉｌｂｅｒｔ矩阵，并取４位有

效数字，则：

犃＝

１．００００ ０．５０００ ０．３３３３

０．５０００ ０．３３３３ ０．２５００

０．３３３３ ０．２５００ ０．２０００

０．５５４１ ０．２７７１ ０．１８４７

０．２７７１ ０．１８４７ ０．１３８５

０．１８４７ ０．１３８５ ０．

熿

燀

燄

燅１１０８

解向量狓的真值取为珘狓 ［ ］＝ １ １ １ Ｔ，则：

珘犫＝犃珘狓＝ ［１．８３３３，１．０８３３，０．７８３３，１．０１５９，

０．６００３，０．４３４］Ｔ

对珘犫施加扰动：

Δ犫＝ ［８．６，３．４，６．８，０．５，３．６，５］
Ｔ·１０－３

构造观测向量：

犫＝珘犫＋Δ犫＝ ［１．８４１９，１．０８６７，０．７９０１，

１．０１６４，０．６０３９，０．４３９］Ｔ

式（９）和式（２５）的计算结果分别记为σ^狓和σ′^狓，则：

Δσ^狓 ＝ σ^^狓 －^σ′^狓 ＜１０
－１０

　　算例１表明，当不存在数值计算稳定性问题

或数值稳定性良好时，式（８）和式（２５）的解算结果

具有一致性。

算例２　类似于算例１，分别使用４阶、５阶、

６阶 Ｈｉｌｂｅｒｔ矩阵构造病态方程组，采用双精度和

单精度对病态方程组进行最小二乘解算，并对式

（８）、式（２５）进行计算，其结果如表１所示。

算例２表明，式（２５）的数值稳定性较好，对于

严重病态问题，其效果更明显，而式（８）的计算结

果失真较为严重。算例分析表明，均方误差数值

计算稳定性的改善在很大程度上取决于单位权中

误差因子数值计算稳定性的提高，相比于经典计

算公式，其计算量较小，且避免了矩阵求逆，符合

数值计算稳定性原则［１７］。此外，本算例直接利用

矩阵体积的定义进行计算，其计算量较大，矩阵体

积计算方法的改进有望进一步提高其数值稳定

性。

表１　双精度和单精度解算结果对比

Ｔａｂ．１　ＣｏｍｐａｒｉｓｏｎｏｆｔｈｅＲｅｓｕｌｔｓＣｏｍｐｕｔｅｄｗｉｔｈ

ＤｏｕｂｌｅＰｒｅｃｉｓｉｏｎａｎｄＳｉｎｇｌｅＰｒｅｃｉｓｉｏｎ

列维数 双精度解算 单精度解算 单双精度结果差

式（８） ０．７８４７ ０．８２４９ ０．０４０２

３ 式（２５） ０．７８４７ ０．７８３３ ０．００１４

结果差 １０－１０级 ０．０４１６

式（８） ３３．１０２８ １５４０．６ １５０７．５

４ 式（２５） ３３．１０２８ ２９．０７３４ ４．０２９４

结果差 １０－８级 １５１１．５

式（８） ６７．４８９１ ２５３０．３ ２４６２．９

５ 式（２５） ６７．４８９１ １７．８９２０ ４９．５９７１

结果差 １０－７级 ２５１２．４

式（８） ８６．５４８９ ２７００．１ ２６１３．６

６ 式（２５） ８６．５４８９ ０．９７８１ ８５．５７０８

结果差 １０－６级 ２６９９．１

５　结　语

通过本文的研究，可得：① 最小二乘解均方

差的矩阵体积表示法形式简单，几何意义明确；

② 最小二乘解算前，可以对其解的精度进行评

定；③ 最小二乘单位权中误差方差计算的矩阵体

积法可避免矩阵求逆，其数值稳定性较好。
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本文研究结果有望将最小二乘平差步骤简化

为两步：① 对系统观测结构、函数模型和观测数

据的质量进行评定；② 根据评定结果，对算法、函

数模型或观测数据的权重进行调整后再平差。
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