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摘　要：推导了ＥＧＮＯＳ系统不同频率情况下的完备性算法。针对ＧＰＳ和ＧＰＳ／Ｇａｌｉｌｅｏ组合导航的情况，模

拟计算了ＥＧＮＯＳ增强系统能为多频用户提供的完备性能。分析结果表明，ＥＧＮＯＳ能够使ＧＰＳ／Ｇａｌｉｌｅｏ系

统的双频用户满足ＣａｔⅠ飞行阶段的完备性要求。
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　　欧洲的ＥＧＮＯＳ系统、美国的 ＷＡＡＳ系统、

日本的 ＭＳＡＳ系统是当前三大空基增强系统。

此类增强系统在为服务范围内的用户提供站星测

量距离各项误差改正、改善定位精度的同时，还为

用户提供完备性信息，为用户的生命安全提供了

有效保障。近年来，国内外许多学者对ＷＡＡＳ系

统在不同情况下的完备性进行了详细的模拟分

析［１６］，但对ＥＧＮＯＳ系统在不同信号频率和不同

导航系统组合导航时的完备性分析较少。因此，

本文首先推导了不同信号频率的用户保护水平

（ＸＰＬ）的计算方法，然后将即将建成的Ｇａｌｉｌｅｏ导

航系统纳入ＥＧＮＯＳ增强系统中，分别模拟计算

了ＧＰＳ和ＧＰＳ／Ｇａｌｉｌｅｏ组合导航系统在ＥＧＮＯＳ

提供增强服务情况下为用户提供的完备性能。

１　犈犌犖犗犛系统进展

欧洲静地导航覆盖服务（ＥｕｒｏｐｅａｎＧｅｏｓｔａ

ｔｉｏｎａｒｙＮａｖｉｇａｔｉｏｎＯｖｅｒｌａｙＳｅｒｖｉｃｅ，ＥＧＮＯＳ）是

欧盟（ＥＣ）、欧洲空间局（ＥＳＡ）和欧洲航空安全组

织（Ｅｕｒｏｃｏｎｔｒｏｌ）合作研发建设的对 ＧＰＳ 和

ＧＬＯＮＡＳＳ导航系统进行增强的空基增强系统。

ＥＧＮＯＳ与美国的 ＷＡＡＳ、日本的 ＭＳＡＳ两大空

基增强系统相类似，由三大部分组成：空间部分、

地面部分和用户部分。

空间部分由三颗静地卫星组成：Ｉｎｍａｒｓａｔ

ＡＯＲＥ（ＰＲＮ 为１２０）、ＥＳＡ Ａｒｔｅｍｉｓ（ＰＲＮ 为

１２４）和ＩｎｍａｒｓａｔＩＯＲＷ（ＰＲＮ为１２６），它们分别

在西经１５．５°、东经２１．５°和东经６５．５°上空。系

统覆盖的范围包括欧洲全境、亚洲、澳洲、南美洲

和北美洲的部分区域。三颗静地卫星除向覆盖区

域的用户发送自身的导航电文、广域差分改正值

外，还发送相应的完备性信息。

地面部分由覆盖２２个国家的４６个地面单元

组成。３４个地面测距／完备性监测站ＲＩＭＳ接收

到ＧＰＳ和ＧＬＯＮＡＳＳ卫星信号后，通过通讯网

络ＥＷＡＮ将数据传输给４个控制站 ＭＣＣ处理，

控制站计算出广域差分和完备性改正数后经６个

地面导航站ＮＬＥＳ上传到系统空间部分，最后通

过３颗静地卫星将广域差分和完备性信息加载在

犔１ 载波传输给用户终端。此外，地面部分还包括

两个支持站，用于对ＥＧＮＯＳ系统性能的监测和

维持［７９］。目前，还未实现对 ＧＬＯＮＡＳＳ导航系

统的增强［１０］。

２　犈犌犖犗犛系统完备性算法

卫星导航系统导航时要满足的性能包括准确
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度、连续性、可用性和完备性４个方面
［１１］。４个性

能指标同等重要，但完备性指标的实现最为困难。

完备性是指导航系统发生任何故障或者误差超

限、无法用于导航和定位时，系统向用户及时发出

报警的能力。ＸＰＬ是衡量ＥＧＮＯＳ系统完备性

的一个重要指标，它由可用性、完备性风险、卫星

的几何和观测误差决定。ＸＰＬ包含两方面的内

容：平面保护水平（ｈｏｒｉｚｏｎｔａｌｐｒｏｔｅｃｔｉｏｎｌｅｖｅｌ，

ＨＰＬ）和垂直保护水平（ｖｅｒｔｉｃａｌｐｒｏｔｅｃｔｉｏｎｌｅｖｅｌ，

ＶＰＬ）。由计算得到的ＸＰＬ与告警门限值比较可

知用户的完备性能是否满足要求［４］。

ＸＰＬ和ＶＰＬ的计算公式为
［１１］：

ＨＰＬ＝犽犺 （犌Ｔ犠犌）－１１１ ＋（犌
Ｔ犠犌）－１槡 ２２ （１）

ＶＰＬ＝犽狏 （犌Ｔ犠犌）－１槡 ３３ （２）

　　在精密进近时，横向比切向的保护要求高很

多，所以认为ＨＰＬ为横向的保护水平，并假定式

（１）服从标准正态分布。式中，犽犺 表示与给定的

犘ｍｄ（犘ｍｄ表示误导信息漏检的概率）对应的置信

分位数；犽狏 表示垂直方向对应犘ｍｄ的置信分位数；

犌 为卫星与用户之间的观测矩阵；犠 为权矩阵。

犌、犠 可通过以下公式得到：

犌犻 ＝ ［－ｃｏｓ（犈犻）ｃｏｓ（犃犻）

－ｃｏｓ（犈犻）ｓｉｎ（犃犻）－ｓｉｎ（犈犻）１］ （３）

犠－１
＝

σ
２
１ ０ … ０

０ σ
２
２ ０

  ０

０ ０ … σ
２

熿

燀

燄

燅狀

（４）

式中，犈犻表示卫星的高度角；犃犻 表示卫星的方位

角；σ
２
犻 为伪距方差。对于单频率和双频率来讲，σ

２
犻

的计算公式不同。

２．１　基于单频率的σ
２
犻 算法

σ
２
犻 ＝σ

２
犻，ｆｌｔ＋σ

２
犻，ＵＩＲＥ＋σ

２
犻，ａｉｒ＋σ

２
犻，ｔｒｏｐｏ （５）

式中，σｆｌｔ表示快速长周期改正中误差，包括卫星

钟的快速变化改正中误差及星历和卫星钟慢变化

改正，即长周期改正后的中误差；σＵＩＲＥ为用户电离

层延迟改正中误差；σａｉｒ为接收机和多路径效应中

误差；σｔｒｏｐｏ为对流层延迟改正中误差。

２．１．１　σｆｌｔ的计算

σ
２
犻，ｆｌｔ＝

（σＵＤＲＥδσＵＤＲＥ＋εｆｃ＋εｒｒｃ＋

　εｌｔｃ＋εｅｒ）
２，ＲＳＳＵＤＲＥ ＝０

（σＵＤＲＥδσＵＤＲＥ）
２
＋ε

２
ｆｃ＋ε

２
ｒｒｃ＋

　ε
２
ｌｔｃ＋ε

２
ｅｒ，ＲＳＳＵＤＲＥ ＝

烅

烄

烆 １

（６）

式中，ＲＳＳＵＤＲＥ是用户差分伪距误差和的平方根标

记，可从静地卫星广播的信息 ＭＴ１０中得到；

σＵＤＲＥ为用户实施快速改正和长周期改正后的伪

距中误差，可从 ＭＴ２６和 ＭＴ２４中得到，并且每

６ｓ更新一次；δσＵＤＲＥ为σＵＤＲＥ的变化因子，可以从

ＭＴ２７或者 ＭＴ２８
［１０］中得到。通过这些协方差

阵，用户可以重新建立各自位置的误差限值，而不

是利用服务范围内的最大限值，因此，通过 ＭＴ２８

可以得到更为准确的σＵＤＲＥ。若通过 ＭＴ２７和

ＭＴ２８均不能得到δσＵＤＲＥ，则认为此时δσＵＤＲＥ＝

１
［１１］。εｆｃ是关于快速改正项的衰减因子，从 ＭＴ７

中得到；εｒｒｃ是关于伪距改正速率的衰减因子，从

ＭＴ１０中得到；εｌｔｃ是关于长期项改正的衰减因子

或ＧＥＯ导航信息数据的衰减因子，从 ＭＴ１０中

得到；εｅｒ为从远洋／本土航线到非精密进近阶段的

衰减因子，从 ＭＴ１０中得到。为了方便模拟，假

定ＲＳＳＵＤＲＥ＝０，不考虑εｆｃ、εｒｒｃ、εｌｔｃ、εｅｒ的影响，则得

到：

σ
２
犻，ｆｌｔ＝ （σＵＤＲＥ×δσＵＤＲＥ）

２ （７）

２．１．２　σＵＩＲＥ的计算

σ
２
ＵＩＲＥ ＝犉

２
ＰＰσ

２
ＵＩＶＥ （８）

其中，σＵＩＶＥ为用户的垂直延迟改正中误差；犉ＰＰ为

倾斜因子：

犉ＰＰ ＝ １－ 犚犲ｃｏｓ犈犻／（犚犲＋犺１（ ））［ ］２ －
１
２ （９）

式中，犚犲为地球平均半径；犈犻 为卫星高度角；犺１

为电离层的参考高度。根据电离层延迟格网修正

法，σＵＩＶＥ的计算可采用以下两种内插法得到
［１２］。

矩形内插法：

σ
２
ＵＩＶＥ（Φｐｐ，λｐｐ）＝∑

４

狀＝１

犠狀（狓ｐｐ，狔ｐｐ）σ
２
狀，ｉｏｎｏｇｒｉｄ

（１０）

　　三角形内插法：

σ
２

ＵＩＶＥ
（Φｐｐ，λｐｐ）＝∑

３

狀＝１

犠狀（狓ｐｐ，狔ｐｐ）σ
２
狀，ｉｏｎｏｇｒｉｄ

（１１）

其中，

σ
２
狀，ｉｏｎｏｇｒｉｄ＝

（σＧＩＶＥ＋εｉｏｎｏ）
２，ＲＳＳｉｏｎｏ＝０

σ
２
ＧＩＶＥ＋ε

２
ｉｏｎｏ，ＲＳＳｉｏｎｏ＝

烅
烄

烆 １
（１２）

式中，σＧＩＶＥ为电离层格网点垂直方向的改正中误

差；εｉｏｎｏ为电离层延迟改正衰减因子；ＲＳＳｉｏｎｏ是电

离层延迟改正和的平方根标记，从 ＭＴ１０中得

到。

εｉｏｎｏ＝

犆ｉｏｎｏｓｔｅｐ （狋－狋ｉｏｎｏ）／犐ｉｏｎｏ ＋犆ｉｏｎｏｒａｍｐ（狋－狋ｉｏｎｏ）

（１３）

犆ｉｏｎｏｓｔｅｐ为电离层格网点延迟更新误差限值，从

ＭＴ１０中得到；犆ｉｏｎｏｒａｍｐ为电离层格网点延迟变化

率，从 ＭＴ１０中得到；狋为当前时间；狋ｉｏｎｏ为 ＭＴ２６

０７２
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中第一字段播发的时间；犐ｉｏｎｏ为电离层延迟改正

ＭＴ２６更新的时间间隔，从 ＭＴ１０中得到。为了

方便模拟，假定ＲＳＳｉｏｎｏ＝０，得到：

σ
２

狀，ｉｏｎｏｇｒｉｄ＝ （σＧＩＶＥ＋εｉｏｎｏ）
２ （１４）

得到犔１ 频率的电离层改正误差后，如果需要，也

可以得到犔２、犔５ 频率观测值的中误差：

σＵＩＶＥ＿犔
２
＝１．６５

２
σＵＩＶＥ＿犔

１

σＵＩＶＥ＿犔
５
＝１．８０

２
σＵＩＶＥ＿犔

１

（１５）

２．１．３　σａｉｒ的计算

σ
２
犻，ａｉｒ＝ ［０．０７４１＋０．１８×ｅ

（－犈犻
／２７．７）］２ （１６）

式中，犈犻表示卫星的高度角。

２．１．４　σｔｒｏｐｏ的计算

σ
２
犻，ｔｒｏｐｏ＝ （０．１２·犿（犈犻））

２ （１７）

犿（犈犻）＝１．００１／ ０．００２００１＋ｓｉｎ
２（犈犻槡 ）

（１８）

　　以上４个误差参数的计算除了σＵＩＲＥ与频率

相关以外，其他三项改正σｆｌｔ、σａｉｒ、σｔｒｏｐｏ与频率无

关。从式（１５）中可以看出，犔１ 频率下的用户电离

层延迟改正中误差小于犔２ 和犔５ 频率下的中误

差，所以，本文在进行单频率模拟时只考虑犔１ 频

率的情况。

２．２　基于双频率的σ
２
犻 算法

双频用户可以采用双频改正法对电离层延迟

进行有效的改正，与单频用户比较，双频用户可以

获得更高的定位精度和完备性。对于双频用户来

讲，伪距方差σ
２
犻 的计算公式为：

σ
２
犻 ＝σ

２
犻，ｆｌｔ＋σ

２
犻，ＵＩＲＥ＋σ

２
犻，ｔｒｏｐｏ （１９）

式中，σ
２
犻，ｆｌｔ为快速长周期改正方差，与单频情况下

相比，还应包含卫星硬件延迟方差；σ
２
犻，ｔｒｏｐｏ所代表

的含义和计算公式与单频情况一致；σ
２
犻，ＵＩＲＥ表示双

频用户电离层距离方差，与单频情况下的计算公

式不同。式（５）与式（１９）相比并不包含σａｉｒ，这是

因为在双频组合的情况下，σａｉｒ已经被包含在σＵＩＲＥ
中［２］。需要说明的是，本文并没有考虑接收机硬

件延迟对伪距方差计算的影响。

σ
２

ＵＩＲＥ＿犔
１
犔
２
＝ 犳

２
１／（犳

２
１－犳

２
２［ ］）２

σ
２
犻，ａｉｒ＿犔［ ］

１
＋

犳
２
２／（犳

２
１－犳

２
２［ ］）２

σ
２
犻，ａｉｒ＿犔［ ］

２
＋σ

２
ＳＶ＿犔

１
犔
２
（２０）

式中，σａｉｒ是接收机和多路径效应中误差，根据式

（１６）可以知道，其计算公式频率是无关的，σＳＶ＿犔
１
犔
２

为犔１、犔２ 频率硬件延迟误差。

文献［１３］指出，σＳＶ＿犔
１
犔
２
＝０．１９２ｍ、σＳＶ＿犔

１
犔
５
＝

０．１７６ｍ，σＳＶ＿犔
２
犔
５
＝０．２９０ｍ。通过对σ

２

ＵＩＲＥ＿犔
１
犔
２

、

σ
２

ＵＩＲＥ＿犔
１
犔
５

、σ
２

ＵＩＲＥ＿犔
２
犔
５

三者进行比较可以得到，由犔１

频率和犔５ 频率组成后的σＵＩＲＥ最小，故在进行双

频率模拟时只对犔１犔５ 频率组合进行模拟分析。

２．３　置信分位数犽值的确定

式（１）和式（２）中的置信分位数犽与误导信息

ＭＩ漏检 ＭＤ概率犘ｍｄ和每个给定时间单元内的

独立样本数有关［１３］。误导信息是导航系统误差

导致的定位误差大于ＸＰＬ值的事件。为了建立

犘ｍｄ与完备性风险要求的关系，应给出每个给定

时间单元内的独立样本数。比如有狀个独立的样

本，对应的完备性风险要求为２×１０－７，则犘ｍｄＸＰＬ＝

２×１０－７／狀。一般认为３６０ｓ间隔的电离层改正值

相互独立，而一个进近需要１５０ｓ，所以一个进近内

最多有一个独立的采样，进而一个垂直引导或精密

进近的时间段内，漏检概率为２×１０－７。对于垂直

引导和精密进近来说，高程方向比平面方向上的完

备性要求高很多，所以，将完备性风险分配为

犘ｍｄＶＰＬ＝１×１０
－７和犘ｍｄＨＰＬ＝２×１０

－９［１３］。因此，可

以得到ＡＰＶⅠ、ＡＰＶⅡ、ＣａｔⅠ飞行阶段与之对应的

置信分位数犽犺 和犽狏 分别为６．０和５．３３。

３　模拟分析

本文按照以上 ＸＰＬ算法分别模拟计算了

ＥＧＮＯＳ的ＧＰＳ单频和双频用户以及ＧＰＳ／Ｇａｌｉ

ｌｅｏ单频和双频用户的完备性。首先，根据 ＧＰＳ

和Ｇａｌｉｌｅｏ的 ＹＵＭＡ历书（Ｇａｌｉｌｅｏ的ＹＵＭＡ历

书数据为模拟数据）计算得到ＧＰＳ和Ｇａｌｉｌｅｏ的

卫星轨道；然后，参考ＥＧＮＯＳ系统的ＥＭＳ服务

播发的实时数据信息［１０］，以播发的各参数值为参

考，设置以下参数：所有的ＧＰＳ卫星和Ｇａｌｉｌｅｏ卫

星的用户差分伪距误差σＵＤＲＥ＝３．７５ｍ；ＥＧＮＯＳ

的３颗静地卫星的σＵＤＲＥ＝１５ｍ；电离层格网点垂

直方向延迟改正误差σＧＩＶＥ＝４．５ｍ。在模拟计算

中，假定系统各部分的可靠性为百分之百，并不考

虑各系统之间的系统差异。根据以上假设，以采

样间隔为３００ｓ计算了２０１００８２７全天ＥＧＮＯＳ

系统覆盖区域５°×５°经纬格网点处用户的ＸＰＬ，

最后生成全天的可用性为９９％的 ＸＰＬ等值域

图。

３．１　单系统单频率模拟分析

ＥＧＮＯＳ系统在 ＧＰＳ单系统单频率（犔１）的

情况下为欧洲地区用户提供的可用性为９９％的

ＨＰＬ和ＶＰＬ，如图１所示。图１中结果表明，用

户的 ＨＰＬ均小于２０ｍ，部分地区优于１５ｍ；

ＶＰＬ均小于４０ｍ，在欧洲中部地区ＶＰＬ的值优

于２５ｍ。与 ＡＰＶⅠ飞行阶段的 Ｈ／ＶＡＬ值比

较，可以得到在 ＧＰＳ系统的单频 （犔１）情况下

ＥＧＮＯＳ系统满足欧洲地区用户提供 ＡＰＶⅠ飞

１７２
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行阶段的完备性要求。

图１　单频率用户在ＧＰＳ系统下的 ＨＰＬ和ＶＰＬ

Ｆｉｇ．１　ＳｉｎｇｌｅＦｒｅｑｕｅｎｃｙＵｓｅｒ’ｓＨＰＬａｎｄＶＰＬ

ＵｎｄｅｒＧＰＳ

３．２　双系统单频率模拟分析

图２是ＧＰＳ／Ｇａｌｉｌｅｏ双系统单频率（犔１）用户

的ＨＰＬ和ＶＰＬ值。模拟结果表明，ＨＰＬ值在绝

大部分欧洲地区均小于１０ｍ；只在东南部极少的

区域大于１０ｍ；ＶＰＬ值在欧洲的绝大部分地区

均小于２０ｍ，在北纬５０°～６５°间甚至优于１５ｍ，

只是在东经１０°～２５°之间的极少部分区域大于

２０ｍ。所以ＧＰＳ／Ｇａｌｉｌｅｏ双系统单频率（犔１）用户

得到的完备性可以满足 ＡＰＶⅡ飞行阶段的要

求。

图２　单频率用户在ＧＰＳ／Ｇａｌｉｌｅｏ系

统下的 ＨＰＬ和ＶＰＬ

Ｆｉｇ．２　ＳｉｎｇｌｅＦｒｅｑｕｅｎｃｙＵｓｅｒ’ｓＨＰＬａｎｄＶＰＬ

ＵｎｄｅｒＧＰＳ／Ｇａｌｉｌｅｏ

３．３　单系统双频率模拟分析

单系统双频率（犔１犔５）用户的ＨＰＬ和ＶＰＬ如

图３所示。模拟结果表明，ＥＧＮＯＳ系统提供的

ＨＰＬ值在欧洲的绝大部分地区小于１０ｍ。图３

（ｂ）中所给出的ＶＰＬ值在欧洲的绝大部分地区小

于１５ｍ，最大的ＶＰＬ值也小于２０ｍ，所以，ＧＰＳ

单系统双频率（犔１犔５）用户在ＥＧＮＯＳ系统下得

到的完备性好于单系统单频率用户，能为欧洲地

区用户提供ＡＰＶⅡ飞行阶段的完备性导航。

３．４　双系统双频率模拟分析

图４是ＧＰＳ／Ｇａｌｉｌｅｏ双系统双频率（犔１犔５）

情况下ＥＧＮＯＳ系统所提供的 ＨＰＬ和ＶＰＬ。可

以看出，ＨＰＬ值在欧洲的绝大部分地区均小于５

图３　双频用户在ＧＰＳ系统下的 ＨＰＬ和ＶＰＬ

Ｆｉｇ．３　ＤｏｕｂｌｅＦｒｅｑｕｅｎｃｙＵｓｅｒ’ｓＨＰＬａｎｄＶＰＬ

ＵｎｄｅｒＧＰＳ

ｍ，少部分地区大于５ｍ但小于１０ｍ；ＶＰＬ值都

小于１２ｍ。由ＣａｔⅠ飞行阶段的 ＨＡＬ＝４０ｍ、

ＶＡＬ＝１２ｍ 的要求可知，ＥＧＮＯＳ系统可以为

ＧＰＳ／Ｇａｌｉｌｅｏ双系统双频率（犔１犔５）用户提供

ＣａｔⅠ飞行阶段的完备性导航。

图４　双频用户在ＧＰＳ／Ｇａｌｉｌｅｏ系统下的 ＨＰＬ和ＶＰＬ

Ｆｉｇ．４　ＤｏｕｂｌｅＦｒｅｑｕｅｎｃｙＵｓｅｒ’ｓＨＰＬａｎｄＶＰＬＵｎｄｅｒ

ＧＰＳ／Ｇａｌｉｌｅｏ

４　结　语

１）在 ＧＰＳ单系统单频率（犔１）的情况下，

ＥＧＮＯＳ系统能为欧洲地区提供 ＡＰＶⅠ飞行阶

段的完备性导航。

２）在ＧＰＳ／Ｇａｌｉｌｅｏ双系统单频率（犔１）的情

况下，ＥＧＮＯＳ系统能为绝大部份欧洲地区用户

提供ＡＰＶⅡ飞行阶段的完备性导航。

３）在ＧＰＳ单系统双频率（犔１犔５）的情况下，

ＥＧＮＯＳ系统能满足欧洲地区用户 ＡＰＶⅡ飞行

阶段的完备性能要求，其完备性能与ＧＰＳ／Ｇａｌｉｌｅ

ｏ双系统单频率（犔１）的完备性能相当。

４）在ＧＰＳ／Ｇａｌｉｌｅｏ双系统双频率（犔１犔５）的

情况下，ＥＧＮＯ系统能够满足欧洲地区ＣａｔⅠ飞

行阶段的完备性能要求。
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