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基于非一致性自适应变异的克隆选择算法
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摘　要：提出了一种基于非一致性自适应变异的克隆选择算法。该算法根据抗体的亲和力自适应地确定相应

抗体的变异率，同时采用非一致性变异方法来提高算法的效率。实验证明，与传统的克隆选择算法相比，本文

提出的方法所需要的收敛时间更少，且能快速地找到最优解，具有一定的实用价值。
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　　克隆选择算法（ｃｌｏｎａｌｓｅｌｅｃｔｉｏｎａｌｇｏｒｉｔｈｍ，

ＣＳＡ）是人工免疫系统
［１］的一种重要模型，是

Ｃａｓｔｒｏ于２００２年根据免疫系统中的克隆选择原

理而提出的［２］。ＣＳＡ作为一种新型的优化算法，

在组合优化［２］、多峰函数优化［３］、网络入侵［４］、模

式识别［５］和特征选择［６］中得到了广泛的应用。然

而，由于ＣＳＡ中的参数数量太多，导致算法对参

数较敏感，因此，算法的精度在应用时常常取决于

人们的经验，算法收敛较慢，应用范围受到一定的

限制。针对以上情况，本文提出了一种基于非一

致性自适应变异的克隆选择算法（ｃｌｏｎａｌｓｅｌｅｃｔｉｏｎ

ａｌｇｏｒｉｔｈｍｂａｓｅｄｏｎｎｏｎｕｎｉｆｏｒｍａｄａｐｔｉｖｅｍｕｔａ

ｔｉｏｎ，ＡＭＣＳＡ），该方法的变异率通过自适应方

法获得，无需人为设置，大大提高了算法的实用

性。同时，ＡＭＣＳＡ继承了传统人工免疫系统和

ＣＳＡ的众多属性，具有自组织、自学习、自识别、

自记忆的能力［７，８］，能快速提供达到最优解的搜

索范围，而且可以保存各个局部最优解，从而可得

到全局最优解。

１　基于非一致性自适应变异的克隆

选择算法

　　传统克隆选择算法需要以下参数：最大迭代

次数犜、初始抗体种群大小犖、最优抗体个数狀、

克隆率β、变异率犿、替换个数犱。ＡＭＣＳＡ中仅

需设定犜和犖 的值，变异率通过自适应方法获

得，其余参数根据前期对传统ＣＳＡ的分析后提前

设置，因此减少了大量的人为干预和对先验知识

的依赖，具有更高的实用性和智能性。同时，采用

非一致性变异算子对抗体进行变异，将变异结果

与进化代数结合起来，使得算法能更好地获得最

优解。本文以应用于优化问题的 ＡＭＣＳＡ算法

描述其算法过程。

１．１　初始抗体群的产生

对于一个优化问题来说，需要求解一个最优

值来使得某个评价函数最大，即 ｍａｘ（犑）。被求

解的参数或者变量有一个取值范围［犞ｍａｘ，犞ｍｉｎ］，

初始抗体种群则在该取值范围内随机获得。而对

于优化问题来说，抗原这一概念则可以忽略，其亲

和力则通过评价函数犑来获得。抗体集合犅 分

为非记忆抗体集合犅狊 和记忆抗体犕，其中，犅狊＝

｛犫狊犻，犻＝１，２，…，犖｝，犖 为非记忆抗体集合的抗体

总数；记忆抗体犕 即为最优的抗体，也就是问题

的候选解。本文对所有问题都采用实数编码，该

编码方式在保证算法精度的同时，可以加快其运

算速度。

１．２　亲和力函数值计算

对于优化问题来说，亲和力通常根据具体的

工程问题来确定，如待优化的函数。犫犼 表示抗体

个体，犖 表示抗体数，则抗体个体亲和力表示为：

犳犼 ＝犑（犫犼），犼＝１，２，…，犖 （１）
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亲和力越高，表示该抗体越靠近最优解。犑（犫犼）表

示对于某个抗体个体犫犼 的评价函数，如最大化函

数应用中的优化函数，这里用评价函数来表示抗

体个体亲和力。

１．３　选择操作

从抗体集犅中选择亲和力最高的狀个抗体，

产生一个新的集合犅ｎｅｗ。对于优化问题来说，通

常需要尽可能地覆盖整个解空间，然后才能避免

获得局部最优解，因此，这里的狀通常直接取值为

犖，也就是说，所有非记忆抗体全部参与算法操

作。

１．４　克隆操作

对狀个被选择出来的抗体进行克隆操作，产

生克隆集合犆犼；克隆过程中，以一定的克隆率β
进行克隆。从前期的研究来看，克隆选择算法通

常对于克隆倍数较为敏感。根据前期的实验［５］，β
取值在［１，３］较为合适。在本文中，β取值为２，其

克隆抗体总数为：

犖ｃｌｏｎｅ＝∑
狀

犻＝１
β·狀 （２）

１．５　变异操作

对克隆集合犆犼进行变异操作，即得到产生变

异后的抗体集合 犆^犼。其中，亲和力越高的个体，

其变异机会越小。通常，该变异率犿 需要人为设

定，而且对于所有的克隆抗体，变异率都是相同

的。但从实际生物免疫系统中的理论来说，亲和

力越高的个体变异由于与抗原更为接近，其变异

率应该越小；而亲和力越低的个体，变异概率应该

越大。为了实现该理论过程和减少对人为设定的

依赖，在本文中，该值通过下面的方法自适应获

得：① 每个抗体的亲和力被归一化：

犳′犼＝ ［犳犼－ｍｉｎ（犳犼）］／［ｍａｘ（犳犼）－ｍｉｎ（犳犻）］

（３）

② 确定每个抗体犫犼的变异率犿犼：

犿犼 ＝１－犳′犼 （４）

　　通过以上过程，不仅可以自适应地得到每个

抗体的变异率犿犼，而且可以使得亲和力越高的抗

体其变异率越小，而亲和力越低的抗体其变异率

越大。

在确定完变异率后，需要对其进行变异操作。

传统的变异算子的作用和变异代数是没有直接关

系的，当算法进化到一定代数以后，由于缺乏局部

搜索，很难通过传统的变异算子获得最优解。而

在本文算法中，拟采用非一致性变异算子，该变异

算子将变异算子的变异结果与进化代数联系起

来，使得在进化初期，变异算子的范围相对较大，

而随着进化的推进，变异的范围越来越小，从而起

到一种对系统微调的作用。

抗体犫犼 的变异过程通过变异函数 ｍｕｔａｔｅ

（犫犼）来实现，其中需要输入该个体的变异率。如

前所述，通过式（３）和式（４）能自适应地根据个体

的亲和力来获得其相应的变异率犿犼。具体过程

如下：

１）将变异率犿犼输入到变异函数ｍｕｔａｔｅ（犫犼）

中，犫犼＝｛犫犼犽｜犽＝１，…，狉｝，犽表示抗体犫犼 的向量维

数。如对于只有一个参数的最优函数问题，犽＝

１。对于任意的犽∈［１，狉］，执行以下变异步骤。

２）根据该个体的变异率犿犼，判读犫犼 的第犽

维是否需要变异。若不需要，则直接执行步骤

３）；如果需要，则利用式（５）的非一致性变异方法

进行变异。变异过程如下：

ｍｕｔａｔｅ（犫犼）

｛

ｆｏｒｅａｃｈ（犫犼犽）

ｄｏ

　ｒｄ＿ｍｒ＝ｒａｎｄｏｍ（０，１）

　ｒｄ＿ｔｏ＝ｒａｎｄｏｍ（－１，１）

　ｉｆ（ｒｄ＿ｍｒ＜犿犼）

　ｉｆ（ｒｄ＿ｔｏ＞＝０）

　　犫犼犽＝犫犼犽＋Δ（狋，ｍａｘ－犫犼犽）

　ｅｌｓｅ

　　犫犼犽＝犫犼犽－Δ（狋，犫犼犽－ｍｉｎ）

ｄｏｎｅ

ｒｅｔｕｒｎ犫犼

｝

其中，函数ｒａｎｄｏｍ（犪，犮）为随机函数；ｍａｘ、ｍｉｎ分

别表示抗体犫犼第犽维取值的最大、最小值。变异

过程通过变异量函数Δ（狋，狌）来获得变异后的抗

体：

Δ（狋，狌）＝狌（１－狉
（１－狋／犜）

λ

） （５）

其中，狉是［０，１］上的一个随机数；犜 为最大迭代

数；狋为当前迭代数；λ是决定非一致性程度的一

个参数，它起着调整局部搜索区域的作用，其取值

一般为２到５，本文取值为２。Δ（狋，狌）的取值范围

为［０，狌］，变异后的结果考虑当前迭代次数狋的影

响，当狋较小时，Δ（狋，狌）的取值接近于０的可能性

越小，使得算法在进化初期能搜索到较大范围；而

当狋越接近于犜 时，Δ（狋，狌）的取值接近于０的可

能性增大，则主要进行局部搜索。这正好符合了

进化初期由于候选解与最优解差别较大，需要进

行大变异，而在进化后期，由于接近于最优解，需

要进行局部搜索的进化规则。

３）输出结果。如果犽取值等于狉，则犫犼 所有

９０３
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维的分量都经历了变异过程，重复步骤１），执行

下一个抗体的变异。

变异是 ＡＭＣＳＡ算法的关键步骤。它使得

某个特征随机变化，避免算法陷入局部最优，这些

变化值将被用到下一代抗体的运算中。同时，在

每次克隆过程中，为了避免变异后的最优抗体比

变异前的最优抗体更差，一个原始的未变异的抗

体在变异过程中被保存下来，保证算法朝着最优

的方向进化。

１．６　亲和力计算

利用式（１）计算所有的变异抗体集合犆^犼的亲

和力犳^犼，^犳犼表示变异后抗体的亲和力。

１．７　重新选择

从变异克隆抗体集犆^犼 中选择狀个最高的亲

和力来替换初始抗体种群中狀个具有最低亲和力

的抗体。在 犆^犼 中，选择具有最高亲和力的抗体

犫ｂｅｓｔ作为候选记忆细胞。如果犫ｂｅｓｔ的亲和力高于

原始记忆细胞，犳犫
ｂｅｓｔ
＞犳犕，则犫ｂｅｓｔ将替换原有的记

忆细胞，从而变成一个新的记忆细胞犕。

１．８　替换最低亲和力抗体

为了增加抗体的多样性，随机选择５％（犱＝

５％）的抗体替换犅狊 中的同等数量的最低亲和力

的抗体。该步增加了抗体种群的多样性。替换抗

体数目太多，会导致算法接近于随机算法；如太

少，则导致算法过早收敛。

１．９　终止条件判断

当迭代次数达到预先定义的迭代次数犜 或

者两次相邻迭代次数中的记忆细胞的改变小于一

个阈值范围时，算法执行过程完成。如果不满足

终止条件，则返回§１．２。

算法结束后，ＡＭＣＳＡ输出记忆细胞，该记忆

细胞即为最后要求解的最优值。

２　实验与分析

为了验证ＡＭＣＳＡ的有效性，本文通过两个

实验将ＡＭＣＳＡ与常用的优化算法，如遗传算法

（ＧＡ）、模拟退火算法（ＳＡ）、遗传模拟退火算法

（ＧＡＳＡ）和传统的克隆选择算法（ＣＳＡ）进行了比

较分析。

２．１　函数优化

为了进行函数优化测试，选用典型的多峰值

函数作为测试函数，其形式如下：

犳（狓）＝１－狘ｓｉｎ（３０狓）狘（１－狓／２），狓∈ ［０，１］

（６）

该函数存在１０个极小值。对于ＣＳＡ和 ＡＣＳＡ，

需要将其转换为求解最大值问题，即式（１）被设置

为：

犳犼 ＝犑（犫犼）＝－犳（狓） （７）

　　各算法参数设置如下：所有算法的最大迭代

次数都为２００，其中，ＧＡ、ＧＡＳＡ选用２２位染色

体，保证精确到小数点后６位，初始种群数为５０，

交叉率为０．６５，变异率为０．０１；ＳＡ中的衰减参数

为０．９５，步长因子为０．０２；ＣＳＡ和ＡＣＳＡ的初始

抗体为５０；ＣＳＡ采用的变异率为０．１。表１列出

了五种测试算法的实验结果。

从表１可以看出，除了ＧＡ算法外，其他三种

算法都能够求解到全局最优解。在实验中发现，

ＳＡ能够将大部分的峰搜索到，因此，相信只要温

度降低得足够缓慢，就可以找到所有的峰值点。

而且ＳＡ在１６代就能找到最优解，速度很快。但

是在实际应用中，不可能每次都会有足够多的训

练次数给ＳＡ训练，那么当训练次数有限或者温

度降低得不够缓慢时，它就可能会陷入局部范围

寻优。因此，ＳＡ应该和其他全局性较好的优化

算法相结合，才能达到最佳效果（如 ＧＡ、ＣＳＡ）。

从实验中可以看出，基本遗传算法的多峰搜索能

力和局部搜索能力都是最差的。其很难搜索到局

部最优解的原因在于存在二进制的通常问题———

“海明悬崖”问题，即两个值只是相差１，可是在二

进制中，不同的位数却差很多，这导致当ＧＡ搜索

到离最优解比较近时，却很难搜索到最优解，因为

“海明悬崖”使得ＧＡ的跳跃性太大，导致局部搜

索能力较弱。ＧＡＳＡ在ＧＡ的基础上加入了Ｂｏ

ｌｔｍａｎ机制保存差解来加强其局部搜索能力，算

法得到改进，找到最优解的能力较基本遗传算法

有一定的提高。

表１　五种算法函数优化结果比较

Ｔａｂ．１　ＲｅｓｕｌｔｓＣｏｍｐａｒｉｓｏｎｏｆＦｉｖｅＡｌｇｏｒｉｔｈｍｓｆｏｒｔｈｅ

ＦｕｎｃｔｉｏｎＯｐｔｉｍｉｚａｔｉｏｎ

算法 收敛最优点 收敛代数 时间／ｓ

（０．０５１７９０，０．０２６０３７４）

ＧＡ （０．０５１７６１２，０．０２６０３７７） １２２ ０．３９０

ＳＡ （０．０５１７８９６，０．０２６０３７４） １１４ ４．１４１

ＧＡＳＡ （０．０５１７９１４，０．０２６０３７４） ８４ ０．３９１

ＣＳＡ （０．０５１７８８９，０．０２６０３７４） １７１ ０．３７３

ＡＭＣＳＡ （０．０５１７８９１，０．０２６０３７４） ８５ ０．２１５

　　从图１可以发现，ＣＳＡ和ＡＭＣＳＡ两种克隆

选择算法能够搜索到最优解，而且多峰搜索能力

也要强于ＳＡ，算法所需的收敛次数和时间也要

少于ＳＡ。其原因在于该类ＣＳＡ算法具有以下优

点：① 在记忆单元基础上运行，确保了快速收敛

０１３



　第３４卷第３期 钟燕飞等：基于非一致性自适应变异的克隆选择算法

于全局最优解；② 有计算亲和性的程序反映了真

实免疫系统的多样性；③ 通过促进或抑制抗体的

产生，体现了免疫反应的自我调节功能。

为了更好地比较 ＡＭＣＳＡ 与ＣＳＡ 的结果，

图１（ａ）描述了ＣＳＡ和ＡＭＣＳＡ的种群平均亲和

力随迭代次数的增加而发生变化的示意图。由于

在第２０次后亲和力发生的变化在图１（ａ）中难以

明显地表示，因此，将迭代次数从２０增加到２００

以后的曲线利用图１（ｂ）单独描绘出来。值得注

意的是，图１表示的亲和力是用式（７）得到的值，

即求得的是其最大值。

图１　ＡＭＣＳＡ与ＣＳＡ平均亲和力比较图

Ｆｉｇ．１　ＣｏｍｐａｒｉｓｏｎｓｏｆｔｈｅＡｖｅｒａｇｅＡｆｆｉｎｉｔｙＶａｌｕｅｓ

ＡｇａｉｎｓｔｔｈｅＩｔｅｒａｔｉｏｎＵｓｉｎｇＡＭＣＳＡａｎｄＣＳＡ

从图１和表１可以看出，ＡＭＣＳＡ 相比于

ＣＳＡ的收敛速度更快，所需的迭代次数更少，仅

用了８５次迭代、０．２１５ｓ就找到了最优解，而

ＣＳＡ则需要１７１代、０．３７３ｓ才能找到最优解。

其原因在于ＡＭＣＳＡ通过自适应控制了变异率，

使得亲和力较好的个体的变异率较小，而ＣＳＡ则

由于采用了固定的变异率，无论抗体亲和力大小，

一律用统一的变异率进行变异，这样有可能造成

算法在最优解附近时难以收敛，增加了收敛所需

的时间。而且 ＡＭＣＳＡ由于采用了非一致性变

异方法，当迭代次数较大时，仅在候选解附近进行

搜索，从而增加了找到最优解的概率。因此，

ＡＭＣＳＡ在保持ＣＳＡ各种优点的同时，减少了对

参数的依赖性，而且能够比ＣＳＡ更快地找到最优

解，具有更高的实用价值。

２．２　图像分割实验

采用Ｌｅｎａ影像对算法进行最佳阈值分割。

实验中，利用五种算法来进行最佳阈值计算。评

价标准利用基于Ｏｔｓｕ法
［９］的图像分割公式，具体

为：

犳＝狑０（狌０－狏）
２
＋狑１（狌１－狏）

２ （８）

其中，狑０ 和狑１ 分别表示其灰度小于和大于门限

犽的概率；狌０ 和狌１ 分别表示上面两个区间的平均

灰度值；狏表示整幅图像的平均灰度。犳值越大，

表示分割的质量越好。该影像的最佳阈值为

１１８。本实验直接利用式（８）中的犳值作为式（１）

的亲和力。

各算法参数设置如下：所有算法的最大迭代

次数都为２００，其中，ＧＡ、ＧＡＳＡ由于影像灰度在

０～２５５之间，采用８位染色体长度，精度为１，初

始种群数为５０，交叉率为０．８，变异率为０．０１。

ＳＡ中的衰减参数为０．９５，步长因子为０．０２；ＣＳＡ

和ＡＣＳＡ的初始抗体为５０，ＣＳＡ采用的变异率

为０．２。表２列出了五种算法所获得的最佳分割

阈值和运算所需的时间。

表２　五种算法Ｌｅｎａ影像分割结果比较

Ｔａｂ．２　ＲｅｓｕｌｔｓＣｏｍｐａｒｉｓｏｎｏｆＦｉｖｅＡｌｇｏｒｉｔｈｍｓｆｏｒ

ＬｅｎａＩｍａｇｅＳｅｇｍｅｎｔａｔｉｏｎ

算法 最佳分割阈值犽 收敛代数 时间／ｓ

ＧＡ １１７．５３６０９９６ ３５ ２３０

ＳＡ １１７．９５１８５８５ １７８ ８６２

ＧＡＳＡ １１７．９５０８２３１ １１３ ２１５

ＣＳＡ １１７．９５２００５ １５１ １２３

ＡＭＣＳＡ １１７．９５２５０５ １０３ ６７

　　从表２可以看出，此次实验再次证明了

ＡＭＣＳＡ算法相比于传统的ＣＳＡ算法在获得同

样的实验结果时，其运算速度更快，因此更具有实

用性。

３　结　语

本文提出的算法能够自适应地根据抗体的亲

和力设置其相应的变异率，相比于传统的ＣＳＡ算

法，减少了对使用者经验的依赖，使得算法的实用

性和智能性得到很大提高。与其他优化算法相

比，本文算法不但能获得最好的结果，而且在多峰

搜索能力上也要强于遗传算法，具有很强的优化

能力。进一步的工作将通过各种方法来提高算法

的运行速度，以使其能够运行到更为复杂的大型

计算上。
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