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Latest Progress of Dynamic Mapping Functions and Its
Application to GNSS Retrieved Water-Vapor
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Abstract: We give two models of VMF1 and GMF derived from ECMWF data based on NMF

model, present the space-time analysis of three mapping functions.

A real example of

ground-based GNSS retrieved water-vapor is given to demonstrate the accuracy of VMF1 and

GMF models. It is shown that the application of VMF1 and GMF improves the precision of

GNSS retrieved water-vapor. At the same time, many investigations may be concentrated on

the repeat rate of baseline length, absolute changes of station heights, and the terrestrial ref-

erence frame,.

Key words: dynamic mapping functions; ground-based GNSS meteorology; numerical weath-

er model; GNSS slant-path wet delay

About the first author: ZHANG Shuangcheng, Ph. D candidate, majors in precise GNSS data processing and GNSS real-time atmosphere

modeling.

E-mail: shuangcheng1979@ 163. com



