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摘　要：基于二型模糊集的犆均值聚类方法对全球时序海表温度数据进行了聚类分析，得到全球海表温度异

常的典型聚类模式，并从聚类中心挖掘出潜在的海洋气候指数。
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　　海表温度（ｓｅａｓｕｒｆａｃｅｔｅｍｐｅｒａｔｕｒｅ，ＳＳＴ）是

地球气候系统的重要指标，对全球海表温度聚类

可以发现全球海表温度异常的聚类模式，有利于

研究海陆气候变化的关联关系。利用空间数据挖

掘和知识发现可以从数据库中自动或半自动地挖

掘事先未知却潜在有用的空间模式［１］。国内外学

者对海表温度进行聚类分析的研究还不多［２６］。

ＶｉｐｉｎＫｕｍａｒ教授领导的研究组使用犓 均值聚

类得到全球海表温度聚类模式［２］，并使用共享最

近邻（ｓｈａｒｅｄｎｅａｒｎｅｉｇｈｂｏｒｓ，ＳＮＮ）聚类方法发现

潜在的海洋气候指数［７］。而时序海表温度聚类中

存在诸多不确定性，需要使用考虑不确定性的聚

类分析方法。在硬聚类的迭代过程中，每个数据

对象对聚类中心的计算起到了同等的作用，由此

得到的聚类中心很难反映类别的典型特征。因

此，使用硬聚类方法进行海表温度聚类分析虽然

可以发现全球海表温度异常在空间上的大致分

布，却难以得到更具典型性的聚类模式。模糊聚

类能够得到样本属于各个类别的不确定性程

度［８］，表达类别归属的模糊性，将其应用于海表温

度聚类中能得到全球海表温度的典型聚类模式。

相对于一型模糊集，二型模糊集引入次隶属度衡

量隶属度的不确定性，能够处理更高阶的模糊性，

意味着具有更强的处理不确定性问题的能力［９］。

Ｈｗａｎｇ和Ｒｈｅｅ使用两个模糊加权因子犿１和犿２

构造区间二型模糊集，在模糊犆均值（ＦＣＭ）算法

的基础上将隶属度扩展为一个区间，提出基于区

间二型模糊集的ＦＣＭ 聚类算法（ＩＴ２ＦＣＭ）
［１０］，

成功处理了ＦＣＭ 中模糊加权因子犿 的不确定

性。ＩＴ２ＦＣＭ与ＦＣＭ 的聚类过程基本类似，不

同之处在于迭代过程中将隶属度从一个确定的值

变为一个区间，并使用计算区间二型模糊集质心

的方法计算聚类中心，其类别判断的过程则是一

个降型和解模糊的过程。在数据结构较复杂、类

别的形态和密度未知时，使用基于二型模糊集的

犆均值聚类方法比传统的ＦＣＭ 聚类方法更加有

效。因此，本文采用基于区间二型模糊集的犆均

值（ＩＴ２ＦＣＭ）聚类方法对时序海表温度数据进行

数据挖掘。

１　全球海表温度聚类分析

１．１　时序海表温度的去季节性处理

一般来说，地球科学家对一些非季节性变化

规律更加感兴趣［２］，而时序数据中存在起主导作

用的季节性变化特征掩盖了其他的变化规律。另

外，时序数据具有较强的时间自相关性，将对聚类

分析产生不利影响。去季节性处理可以从时序数

据中去除季节性特征，也可以从一定程度上减少

时间自相关［３］。如图１（ａ）所示为原始的时间序

列，可以看到季节性变化非常明显。

本文使用零均值规范化方法对时序数据进行

去季节性处理。该方法对于各月的数据计算该月

的多年数据的均值和标准差，然后用原始数据减



武 汉大学学报·信息科学版 ２０１２年２月

去该月的均值并除以标准差，得到规范化处理后的

数据。图１（ｂ）为使用零均值规范化方法进行去季

节性处理后的海表温度时间序列，可见去季节性处

理消除了季节性因素和数据中的时间自相关。

图１　零均值规范化处理

Ｆｉｇ．１　ＭｏｎｔｈｌｙＺＳｃｏｒｅ

１．２　时序海表温度聚类的不确定性处理

在全球海表温度聚类中存在许多不确定性。

首先，数据中存在大量噪声，如高纬度地区的海洋

长年处于极低温状态，海表温度基本保持不变，因

此海表温度异常为零，这些地区的时序海表温度

数据无法反映海表温度异常，此外还存在其他偶

然因素造成的噪声数据。其次，有些格网点属于

孤立点，并不属于某一种群聚模式，使用硬聚类方

法很难将其分离。因此，在全球时序海表温度数

据中存在大量无法反映典型聚类特征的数据。针

对时序海表温度聚类中的不确定性问题，采用模

糊聚类的方法进行聚类分析。为每个格网点上的

时序海表温度赋予隶属度，用来衡量其在归属类别

中的典型性，那些具有较高隶属度的时序海表温度

具有较高的典型性，更有价值。因此，使用模糊聚

类可以得到全球海表温度的典型聚类模式。

１．３　时序海表温度的聚类分析

采用１９８１～２００７年的月平均全球最优插值海

表温度ＮｅｔＣＤＦ数据，该数据为经纬度１°×１°全球

格网点数据。另外，本文还收集了ＰＤＯ、ＡＮＯＭ１

＋２、ＡＮＯＭ３、ＡＮＯＭ３．４、ＡＮＯＭ４等几种基于海

表温度异常的海洋气候指数进行辅助分析。

在聚类分析中，常用欧氏距离法衡量样本之

间的相似性。然而，时序海表温度聚类分析的对

象为经过去季节性处理后的时间序列，其反映海

表温度异常的变化，因此这些时间序列之间的相

似性应主要体现变化特征的相关，对时序海表温

度的聚类就是寻找具有相关变化特征的时间序列

的过程。因此，使用相关系数衡量时序数据间的

相似性，这种相似性度量方法考虑了时序数据的

全局变化特征［１１］。式（１）为时序海表温度的皮尔

森相关系数的计算公式［２］：

狉＝∑
犻

（狓犻－珚狓）（狔犻－珔狔）／

∑
犻

（狓犻－珚狓）
２

∑
犻

（狔犻－珔狔）槡
２ （１）

其中，犡＝（狓１，狓２，…，狓３１２），犢＝（狔１，狔２，…，狔３１２），

分别为两个不同格网点上的去季节性后的海表温

度时间序列；狓犻和狔犻 是时间序列犡 和犢 对应时

间犻的海表温度值；珚狓和珔狔 分别为两个时间序列

的均值；狉是犡 和犢之间的相关系数，－１≤狉≤１。

如果聚类对象之间的相关系数较大，则表明这些

区域海表温度的变化规律之间具有较高的相似

性，通常将这些对象聚成一类。

采用零均值规范化方法对海表温度时序数据

进行去季节性处理，使用时序海表温度之间的相

关系数作为聚类分析中的相似性度量方法，在此

基础上使用基于区间二型模糊集的犆均值聚类

方法将全球时序海表温度聚为５０类，如插页Ⅲ彩

图１所示。其中，水平轴和垂直轴分别表示经度

和纬度，右侧的颜色条显示的不同颜色表示不同

的类，属于同一类格网点上的海表温度的变化的

相关性较强。

聚类分析的结果可以反映全球海表温度异常

的群聚模式。模糊聚类使用隶属度衡量类属的典

型性，在时序海表温度的模糊聚类中，隶属度越

大，该时间序列更能典型代表其所属类别的特征。

因此，在插页Ⅲ彩图１所示的聚类结果的基础上，

保留隶属度较大的格网点进行显示，由此得到的

海表温度群聚模式能体现全球海表温度异常的典

型分布。插页Ⅲ彩图２所示为设置隶属度阈值为

０．５的聚类结果，图中用不同颜色显示不同类别，

相同颜色表示的块状区域表示一种聚类模式。通

过模糊聚类，在世界上许多区域形成了海表温度

异常的聚类模式，每种聚类模式代表一种典型的

海表温度异常现象。通过模糊聚类得到的聚类中

心能够总体反映聚类模式所覆盖区域的海表温度

异常的时间序列。

使用插页Ⅲ彩图２所示的典型聚类模式，将

聚类中心与海洋气候指数进行相关分析。插页Ⅲ

彩图３显示了几个与厄尔尼诺指数（ＡＮＯＭ１＋２、

ＡＮＯＭ３、ＡＮＯＭ３．４、ＡＮＯＭ４）相关性较大的类

别，插页Ⅲ彩图３（ｃ）中用颜色显示类３１，其聚类

中心与ＡＮＯＭ１＋２的相关系数达到０．９３３８，与

ＡＮＯＭ３的相关系数达到０．８８１９；彩图３（ｅ）中

６１２
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用颜色显示类１７，其聚类中心与ＡＮＯＭ３的相关

系数达到０．８４０５，与 ＡＮＯＭ４的相关系数达到

０．９２６５，与ＡＮＯＭ３．４的相关系数达到０．９４５１。

插页Ⅲ彩图３中显示的相关分析结果能够验

证海表温度模糊聚类分析的有效性。众所周知，

厄尔尼诺常常会使北美地区当年出现暖冬，南美

沿海持续多雨；英国的科学家曾指出，拉尼娜现象

将使北美洲的西部地区、南美洲及非洲东部地区

面临干旱威胁；厄尔尼诺现象往往造成南美西岸

持续大雨、东南非洲大范围干旱，并常给北美西岸

地区造成频繁的强风暴活动［１２］。插页Ⅲ彩图

３（ａ）、３（ｂ）所显示的类覆盖了北美西岸，彩图３（ｃ）

显示的类覆盖了南美洲的西海岸，彩图３（ｄ）则显

示了非洲东部海岸，这些相关分析的结果验证了

已知的与厄尔尼诺现象有关的地区。同时，插页

Ⅲ彩图３（ｃ）和３（ｅ）所示的类别与厄尔尼诺指数

的相关系数达到了相当高的水平，而这两个类别

所覆盖的区域与定义厄尔尼诺指数的地理位置基

本一致，可以认为是对厄尔尼诺指数的重现。插

页Ⅲ彩图３（ｆ）、３（ｇ）、３（ｈ）分别显示了通过模糊

聚类得到的类３１与 ＡＮＯＭ１＋２指数、类１７分

别与 ＡＮＯＭ４指数和 ＡＮＯＭ３．４指数的时间序

列曲线图，可以看到，它们的相似度很高，其变化

趋势基本一致。

相比犓 均值聚类，本文所采用的基于二型模

糊集的犆均值聚类方法能够得到更具典型性的

ＳＳＴ聚类中心。分别使用模糊聚类和犓 均值聚

类得到ＳＳＴ聚类中心，与各厄尔尼诺指数进行相

关分析，表１给出了两种方法得到的两组聚类中

心分别能达到的最高相关系数，可以看到，使用模

糊聚类得到的聚类中心能够与厄尔尼诺气候指数

达到更好的相关性，这在插页Ⅲ彩图３中的时间

序列曲线图中也得到了体现。

表１　聚类中心与气候指数的最大相关性比较

Ｔａｂ．１　ＣｏｒｍｐａｒｉｓｏｎｏｆｔｈｅＭａｘｉｍｕｍＣｏｒｒｅｌａｔｉｏｎｏｆ

ＣｌｕｓｔｅｒｉｎｇＣｅｎｔｅｒｓａｎｄＣｌｉｍａｔｅＩｎｄｉｃｅｓ

ＰＤＯ
ＡＮＯＭ１

＋２

ＡＮＯＭ

３

ＡＮＯＭ

３．４

ＡＮＯＭ

４

犓均值聚类 －０．６５１６ ０．９０３７ ０．８６５１ ０．８８１３ ０．８２６０

二型模糊犆
均值聚类

－０．７７７９ ０．９３３８ ０．８８１９ ０．９４５１ ０．９２６５

　　综上所述，相比传统的硬聚类方法，使用基于

二型模糊集的犆均值聚类方法对全球时序海表

温度进行聚类分析更加有效，得到的聚类中心可

以反映全球海表温度异常的典型分布，利用这种

典型聚类模式研究全球气候变化更有意义。

２　挖掘海洋气候指数

ＶｉｐｉｎＫｕｍａｒ教授领导的研究组使用ＳＮＮ

聚类方法发现了一些潜在的海洋气候指数［３］。

ＳＮＮ聚类方法可以自动获取聚类数目，并且得到

地理上连续的聚类。然而，这种方法不能直接处

理时序海表温度聚类中的不确定性，往往得到数

目繁多的聚类模式，需要进行大量的筛选。本文

使用模糊聚类方法可以直接得到具有典型性的海

表温度聚类模式，从得到的聚类中心中挖掘出新

的海洋气候指数。

在全球较大范围内，如果ＳＳＴ聚类中心与陆

地气温的相关性更大，则此ＳＳＴ聚类中心可以作

为已知海洋气候指数的变体，或者可以视为潜在

的候选海洋气候指数。因此使用全球时序陆地气

温数据作为辅助，计算各海表温度聚类中心与全

球陆地气温的相关系数，从而找出对陆地区域影

响较广的ＳＳＴ聚类中心，在此基础上，比较ＳＳＴ

聚类中心与海洋气候指数对陆地气温的影响大

小，从而挖掘出潜在的海洋气候指数。实验框架

如图２所示。

图２　发现海洋气候指数实验框架

Ｆｉｇ．２　ＦｒａｍｅｏｆＯｃｅａｎＣｌｉｍａｔｅＩｎｄｉｃｅｓＤｉｓｃｏｖｅｒｙ

２．１　挑选候选聚类中心

海洋气候指数对陆地气候具有指示作用，与

陆地气温相关性较好，插页Ⅲ彩图４显示了厄尔

尼诺指数ＡＮＯＭ４与全球陆地气温的相关性，每

个陆地格网点对应一个相关系数值，右侧的颜色

条指示相关系数的大小，横纵坐标分别为经度和

纬度。可以看到，ＡＮＯＭ４指数与地球上某些区

域陆地气温的相关性较好，特别是受厄尔尼诺现

象影响较大的区域，如南美洲西南部、非洲东北

部、东南亚和澳大利亚北部等。

为了探知海表温度聚类中心对陆地气温的影

响范围，计算海表温度聚类中心与陆地气温的相

７１２
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关系数。如插页Ⅲ彩图４所示，与海洋气候指数

的相关系数大于０．２的地区的相关性相对更显

著，因此统计与每个ＳＳＴ聚类中心的相关性大于

０．２的陆地格网点的个数，得到的直方图如图３

所示，横坐标为ＳＳＴ聚类中心的标号，纵坐标为

与ＳＳＴ聚类中心的相关性大于０．２的陆地格网

点个数。为了评判ＳＳＴ聚类中心的影响范围的

大小，将已知海洋气候指数作为参照，故将海洋气

候指数也列入直方图，横坐标中的５１、５２、５３、５４

分别代表ＰＤＯ指数、ＡＮＯＭ１＋２指数、ＡＮＯＭ３

指数、ＡＮＯＭ４指数。从图３可以看出，海洋气候

指数对应的陆地格网点数均大于３００。对ＳＳＴ聚

类中心来说，与陆地气温具有较大相关性的陆地

区域越大，该聚类中心越有可能成为潜在的气候

指数。因此，挑选出图中对应陆地格网点数大于

３００的聚类中心，认为这些聚类中心对陆地气候

的影响较广，作为后续分析的候选ＳＳＴ聚类中

心。可以从候选聚类中心中发现已知海洋气候指

数的变体和潜在的海洋气候指数。

图３　相关性大于０．２的陆地格网点统计直方图

Ｆｉｇ．３　ＳｔａｔｉｓｔｉｃＨｉｓｔｏｇｒａｍｏｆＬａｎｄＧｒｉｄＰｏｉｎｔｓ

ＷｈｏｓｅＣｏｒｒｅｌａｔｉｏｎＨｉｇｈｅｒＴｈａｎ０．２

２．２　挖掘海洋气候指数

２．２．１　挖掘已知海洋气候指数的变体

与海洋气候指数的相关性较大（大于０．４小

于０．８）的聚类中心可能与海洋气候指数体现了

相似的气候现象，但是这样的聚类中心依然是有

价值的，它们可能是已知海洋气候指数的变体。

特别是在一些陆地区域，相比海洋气候指数，某些

ＳＳＴ聚类中心与陆地气温的相关性更大，并且具

有较大的覆盖范围。

为了将ＳＳＴ聚类中心与海洋气候指数进行

比较，如果聚类中心与陆地气温的相关性更大，则

将相关系数显示为正数；如果海洋气候指数与陆

地气温的相关性更大，则将相关系数显示为负数，

用颜色条指示不同等级的相关系数值。

如插页Ⅲ彩图５（ａ）、５（ｂ）、５（ｃ）和５（ｄ）显示

了类４５与海洋气候指数的比较，右侧的颜色条指

示相关系数的大小，红色表示聚类中心与陆地气

温的相关性更大，蓝色表示海洋气候指数与陆地

气温的相关性更大。插页Ⅲ彩图５（ｅ）用颜色显

示的区域为类４５的地理位置。可以明显看出，在

非洲的大部分地区、西欧、南美洲东部和澳大利亚

南部地区，类４５与陆地气温的相关性比海洋气候

指数与陆地气温的相关性更大。插页Ⅲ彩图５（ｆ）

为类４５的ＳＳＴ聚类中心的时间序列曲线图，将

其与基于海表温度异常的海洋气候指数的曲线图

进行比较，可以看到，聚类中心４５反映了厄尔尼

诺指数所体现的几次典型的海表温度异常，同时

还反映了１９８７～１９８８年的一次海表温度的陡然

增温，这是已知海洋气候指数所没有体现的。

因此，类４５可以作为已知海洋气候指数的变

体，在研究非洲地区、西欧、南美洲东部和澳大利

亚南部海岸等地区的气候变化时，可以采用类４５

对应的ＳＳＴ聚类中心的时间序列作为厄尔尼诺

指数的变体，研究海陆气候变化的关系。

２．２．２　挖掘潜在的海洋气候指数

与海洋气候指数的相关性小于０．４的ＳＳＴ

聚类中心可能代表新的海洋气候现象，从这些聚

类中心中可能发现潜在的海洋气候指数。插页Ⅳ

彩图６为类２６与海洋气候指数的比较，可以看

到，在非洲大部分地区、印度、中国西南部、南美洲

的少部分地区，类２６的影响比较显著，相关性胜

过几个海洋气候指数。插页Ⅳ彩图６（ｄ）为类２６

的地理位置，彩图６（ｅ）为类２６的ＳＳＴ聚类中心

的时间序列曲线图，将其与基于海表温度异常的

海洋气候指数的时间序列曲线图进行比较，可以

看到，聚类中心２６反映了１９８６年的一次海表温

度的陡然下降、１９９９年海表温度的一次陡然上升

以及２００１～２００２年海表温度的一次陡然下降，这

是已知海洋气候指数所没有体现的。类似地，插

页Ⅳ彩图７、彩图８分别显示了类４１、类３７与海

洋气候指数的比较。这些海表温度聚类模式可以

视为潜在的海洋气候指数。

通过以上分析，从海表温度聚类模式中挖掘

出了已知海洋气候指数的变体以及潜在的基于海

表温度异常的海洋气候指数。特别是在研究非洲

地区、南美洲东北部、澳大利亚北部、东南亚、印度

尼西亚、印度、俄罗斯东部、北美洲南部和欧洲的

某些国家的气候变化时，可以考虑使用这些ＳＳＴ

聚类中心的时间序列作为潜在的海洋气候指数研

究海陆气候的变化关系。

３　结　语

本文使用模糊聚类的方法对全球海表温度进
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行了聚类分析，已知海洋气候指数得到了重现，验

证了模糊聚类的有效性。从模糊聚类得到的聚类

模式中，在前人研究的基础上挖掘出了新的可以

作为潜在的海洋气候指数的ＳＳＴ聚类中心，这些

聚类中心与陆地气温的相关性较好，可以对较大

范围陆地区域的气候产生影响。本文使用模糊聚

类方法挖掘出了新的海洋气候指数，但是仍存在

许多不足，如使用二型模糊犆均值聚类方法对全

球海表温度进行聚类的算法效率较低。本文使用

的是长时间序列的月平均数据研究大尺度的全球

气候变化，今后可以在此基础上使用高分辨率的

海表温度数据或其他变量，综合多种陆地气候变

量进行分析，并可考虑时滞效应，使用本文得到的

ＳＳＴ聚类中心和潜在的海洋气候指数研究局部

地区的气候变化。
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