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摘　要：提出了一种利用网格搜索法定位地球椭球面闪电位置的方法，在闪电可能发生的整个区域内寻找最

适应解，通过采用多级网格搜索策略，计算结果将迅速收敛至最终解。分别用仿真数据和电网雷电定位系统

实际电力线雷击事故点进行计算，证明了该方法的有效性和稳定性。
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中图法分类号：Ｐ２３７．９；Ｐ２２６

　　由多个雷电探测站组成的大区域雷电探测网

可以向气象、电力、航天等部门提供准实时的闪电

信息，为闪电灾害预警和事故处理提供重要依

据［１］。探测站可记录雷电信号的到达时间和方

向，当多个探测站接收到信号时，便可计算闪电的

发生时间和位置［２４］。对于地闪探测，一般取低频

段闪电信号，这时电波沿地球表面传播，其传播线

路可以认为是大地线，这种非视距传播给闪电的

定位解算造成了困难。目前已有的解算方法大都

是迭代平差算法，存在初始值难以确定的问题；另

外，此类方法需多次对系数矩阵进行求逆，导致数

值计算的不稳定［３］。本文给出了一种基于网格搜

索的椭球面闪电定位计算方法，该算法的优点是

无需初始值，也不存在对系数矩阵求逆，因此稳定

性较好；为减少计算量，可采用多级网格搜索方

法。因为方向测量误差比较大，本文主要采用到

达时间测量值进行讨论。

１　椭球面闪电定位模型

假设闪电发生位置的经纬度为（犅，犔），发生

时间为狋，第犻个探测站的大地坐标为（犅犻，犔犻），犻

＝１，２，…，狀，它接收到雷电信号的时间为：

狋犻＝狋＋犛犻狆／犮＋ε犻 （１）

式中，犛犻狆为从闪电发生位置到探测站的大地线距

离；犮为电磁波传播速度，一般可取真空中的光

速；ε犻为时间测量误差，本文假设其服从正态分布

ε犻～犖（０，σ
２
犜）。

大地线长度犛犻狆的计算采用Ｓｏｄａｎｏ
［５］或张萍

等［３，４］给出的方法，只要给定两点的大地坐标，就

能以较高的精度计算出它们之间的大地线长度。

探测站位置固定不变，闪电到第犻个探测站间的

大地线长度可表示为闪电位置（犅，犔）的函数：

犛犻狆 ＝犳犻（犅，犔） （２）

　　由于大地线长度的计算过程很复杂，当多个

探测站接收到闪电信号时，由式（１）组成的方程组

非线性程度很高。为简化计算，许多文献都利用

探测站之间的到达时间差消去未知量狋，其观测

方程为：

狋犼－狋犻 ＝ （犛犼狆 －犛犻狆）／犮＋ε犼－ε犻 （３）

联立时差方程组计算出闪电位置之后再由式（１）

计算闪电时间，该方法称为时差定位技术。若已

解算出闪电位置为（犅０，犔０），则闪电发生时间由

下式计算：

狋０ ＝
１

狀∑
狀

犻＝１

狋犻－犳犻（犅０，犔０）／［ ］犮 （４）

由于存在测时误差，闪电发生时间狋０可取各站推

算结果的平均值。

２　网格搜索法

网格搜索可用于目标定位［６，７］，其关键在于



武 汉大学学报·信息科学版 ２０１０年９月

根据已有的先验条件划分合适的网格，构造恰当

的适应函数，对每个格点计算适应值。

若由先验条件得知闪电位置可能的范围为犅

∈［犅ｍｉｎ，犅ｍａｘ］，犔∈［犔ｍｉｎ，犔ｍａｘ］，将该区域划分成

犓×犕 个网格，则各格点的大地坐标为：

犅犽犿 ＝犅ｍｉｎ＋犽（犅ｍａｘ－犅ｍｉｎ）／犓

犔犽犿 ＝犔ｍｉｎ＋犿（犔ｍａｘ－犔ｍｉｎ）／犕
（５）

式中，犽＝０，１，２，…，犓；犿＝０，１，２，…，犕。

对每个格点构造一代价函数：

χ
２
＝
１

σ
２
犜
∑
狀

犻＝１

狋犻－犳犻（犅犽犿，犔犽犿）／犮－狋（ ）０
２ （６）

式中，犳犻（犅犽犿，犔犽犿）为格点（犅犽犿，犔犽犿）到探测站犻

的大地线长度。当所考虑格点正好位于雷电发生

的真实位置时，由式（１）和式（４）可得：

χ
２
＝
∑
狀

犻＝１

ε犻－珋（ ）ε
２

σ
２
犜

＝
（狀－１）犛

２

σ
２
犜

～χ
２（狀－１）

（７）

式中，珋ε＝
１

狀
∑
狀

犻＝１
ε犻、犛

２＝
１

狀－１
∑
狀

犻＝１

（ε犻－珋ε）
２分别为（ε１，

ε２，…，ε狀）的样本均值和样本方差。显然，其代价

函数为一服从卡方分布χ
２（狀－１）的随机变量。

当格点位置远离真实闪电位置时，由式（６）计算的

代价函数值将迅速增大。χ
２（狀－１）分布的概率密

度函数为：

狆（狓）＝
狓狀
／２－３／２ｅ－狓

／２

２狀
／２－１／２

Γ（狀／２－１／２）
（８）

将各格点位置对应的代价函数值代入式（８），算出的

概率密度越大，则相应格点越接近真实闪电位置。

因此，可将式（８）计算出的概率密度值作为权重，最

终的计算结果为各有效格点的加权平均值。实际计

算时，由于σ
２
犜
未知，通常将其设为一常数，将代价函

数最小时对应的网格位置视为闪电发生位置。

利用网格搜索算法，只要网格间距足够小，最

终结果必定能趋近于闪电位置的最大似然估计

值。但实际上网格不可能划分得无限密，犓、犕 的

值越大，计算量按２次幂增长，必须考虑减少搜索

计算量的方法。为此可以采用多级搜索的策略，

即先将较大的搜索区域划分成较为稀疏的网格，

计算每个格点的代价函数；再以代价函数最小的

格点为中心点选择一小片区域作为搜索范围，重

新划分网格。这样多级搜索之后，可显著提高网

格分辨率，并减小计算量。

３　计算及分析

　　分别利用电网雷击数据及仿真探测站数据进

行了计算与分析。电网雷击点位求算给出了网格

搜索的步骤，并计算了搜索结果与雷击事故点的

距离。结果表明，网格搜索法计算出的结果在合

理范围之内。仿真计算利用蒙特卡罗法产生几组

探测站闪电信号到达时间，并赋以服从正态分布

的误差，通过对网格搜索法求算出的结果进行统

计分析，可确定计算结果的分布范围。

３．１　电网雷击实例计算

某电力系统雷电探测网于２００４０７２０探测

到一次闪电事件，该次闪电击中一电力线杆塔，事

故点大地坐标为（１１７°３６′３６．１″，３１°４５′１．１″），共有

１２个探测站接收到闪电信号。探测站位置分布

见图１，原始数据见表１。

图１　探测站分布与格点代价函数值（取

对数）的分布等值线

Ｆｉｇ．１　ＤｉｓｔｒｉｂｕｔｉｏｎｏｆＳｅｎｓｏｒｓａｎｄＣｏｎｔｏｕｒｓｏｆ

ＬｏｇａｒｉｔｈｍｉｃＣｏｓｔＦｕｎｃｔｉｏｎＶａｌｕｅ

表１　探测站坐标与原始探测数据

Ｔａｂ．１　ＬｏｃａｔｉｏｎｏｆＳｅｎｓｏｒｓａｎｄＯｒｉｇｉｎａｌ

ＭｅａｓｕｒｅｍｅｎｔｓＤａｔａ

探测站

编号

探测站大地坐标

经度 纬度

信号到达

时间／ｓ

１ １１７°２４′４１．１４９″ ３１°５５′４７．６９１″ ０．４８８４４３５

２ １１８°０４′５３．１４５″ ３１°５２′１６．９４２″ ０．４８８５１２８

３ １１８°４４′１４．３５４″ ３１°４６′５１．０４２″ ０．４８８７１５６

４ １１８°３８′０４．２６３″ ３２°１０′１７．９１９″ ０．４８８７１７３

５ １１７°３４′３０．５５０″ ３２°４４′５５．３８２″ ０．４８８７２３６

６ １１８°３３′４０．９０８″ ３０°５９′４９．５１１″ ０．４８８７６７１

７ １１５°２９′０７．３２３″ ３１°３９′２４．９４３″ ０．４８８７９５２

８ １１７°１５′５４．８０５″ ３０°２８′３０．５８３″ ０．４８８８３７７

９ １１６°１９′１８．９３２″ ３０°４３′１０．７２０″ ０．４８８９１４５

１０ １１８°５１′３８．５２６″ ３２°５９′４８．６２２″ ０．４８８９４６２

１１ １１５°２９′０７．３２３″ ３１°３９′２４．９４３″ ０．４８９０３１７

１２ １１６°５２′００．７４１″ ２９°５６′４３．５４５″ ０．４８９０６１９

　注：根据我国保密法相关规定，本文实例中的探测站坐标经、纬

度作了技术处理。

　　首先，定义搜索级数为３，每次的网格数皆设

为犽＝－犕＝１００。第一级搜索取闪电位置的初始

搜索区域为：

犅∈ ［犅１－
２π
１８０
，犅１＋

２π
１８０
］

８５０１
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犔∈ ［犔１－
２π
１８０
，犔１＋

２π
１８０
］ （９）

　　这是一个以首个接收到闪电信号的探测站为

中心、覆盖范围超过４００ｋｍ×４００ｋｍ 的区域。

显然，几乎所有探测站都位于该初始区域，且第一

个探测站位于探测网中部，因此，闪电发生位置必

定处于该区域。

图１绘出了第一级搜索代价函数χ
２的对数

值分布的等值线图形。经比较可知，图中探测站

１东南方向不远处对应网格的χ
２最小，因此闪电

位置处于该区域。以代价函数值最小的格点

（犅ｍｉｎ，犔ｍｉｎ）为中心，取第二级搜索的范围为：

犅∈ ［犅ｍｉｎ－
０．２π
１８０

，犅ｍｉｎ＋
０．２π
１８０

］

犔∈ ［犔ｍｉｎ－
０．２π
１８０

，犔ｍｉｎ＋
０．２π
１８０

］ （１０）

　　通过相同的方法，可求算出第二次搜索的代

价函数最小值，再以之为中心进行下一次搜索。

最终计算出的代价函数最小值对应的格点位置

（犅犌，犔犌）即为所求的闪电位置，其大地坐标为

（１１７°３６′３６．１″，３１°４５′２７．４７″），它与事故点的距离

为６６２．８ｍ。

分别设事故点和网格搜索结果（犅犌，犔犌）为闪

电发生位置，图２绘出了由各探测站推算的闪电

发生时间与由式（４）计算的平均闪电时间的差值，

称其为相对测时误差。第１０个探测站的误差远

大于其他站，接近１５μｓ，可认为含有时间测量粗

差，其数据应予以摒弃。利用其余数据，以（犅犌，

犔犌）为中心再次搜索得到的代价函数最小值对应

网格点的坐标为（１１７°３６′３６．１″，３１°４５′２７．４７″），距

事故点距离为６３２．１ｍ。目前，国内外闪电定位

的精度一般为５００～１０００ｍ，本文计算结果在该

范围之内。另外，利用比较各探测站相对测时误

差的方法，在探测站数量较多时网格搜索法可识

别出含粗差的数据，剔除该数据有助于定位精度

的提高。

图２　各探测站相对测时误差

Ｆｉｇ．２　ＲａｌａｔｉｖｅＴｉｍｅＭｅａｓｕｒｅｍｅｎｔ

ＥｒｒｏｒｏｆＳｅｎｓｏｒｓ

３．２　网格搜索算法仿真计算

假设要利用一个由４站雷电探测网对发生于

（１１７°３６′３６．１″，３１°４５′２７．４７″）的闪电进行定位，探

测站的坐标由表２给出，雷击点位与探测站的位

置如图３所示。采用蒙特卡罗法，进行５００次计

算，每次计算各探测站所用时间值为精确到达时

间加一服从零均值正态分布的测时误差，其标准

差为０．５μｓ。图４绘出了以真实闪电位置为原点

的网格搜索结果的散点图，图中每个黑点表示一

次网格搜索的计算结果，可见所有计算结果都散

布在闪电真实位置周围，且离真实位置越近，密度

越大，解算结果距真实雷击点位最远不超过

５００ｍ。

表２　仿真计算探测网坐标

Ｔａｂ．２　ＮｅｔｗｏｒｋＳｅｌｅｃｔｅｄｆｏｒＳｉｍｕｌａｔｉｏｎ

探测站编号
探测站大地坐标

经度 纬度

１ １１７°００′００．０００″ ３１°３４′３７．２００″

２ １１６°００′００．０００″ ３１°００′００．０００″

３ １１８°００′００．０００″ ３１°００′００．０００″

４ １１７°００′００．０００″ ３１°４３′５５．２００″

图３　探测网与雷击点位

Ｆｉｇ．３　ＳｅｎｓｏｒＮｅｔｗｏｒｋａｎｄＬｉｇｈｔｎｉｎｇＳｔｒｉｋｅＰｏｉｎｔ

　　应指出的是，图４中计算结果点位的分布也

受到网格搜索法最小网格分辨率的影响，因而明

显可见部分点位规则地排列在网格上。但是，闪

电定位的误差主要受测时误差的影响，并且网格

分辨率可通过增加搜索的级数而提高，由算法本

身带来的误差可忽略不计。蒙特卡罗法分析表

明，普通计算机利用网格搜索算法可在短时间内

图４　计算结果经纬度与真实位置的差别

Ｆｉｇ．４　ＣｏｍｐａｒｉｓｏｎｏｆＣｏｍｐｕｔｅｄＲｅｓｕｌｔｓｗｉｔｈ

ＡｃｔｕａｌＬｏｃａｔｉｏｎ

９５０１
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进行多次闪电定位计算，每次计算耗时约１ｓ；另

外，该算法求算的结果都将接近真实值，不会出现

发散现象。因此，利用网格搜索法解算雷击点位

置是一种有效而稳健的方法。

４　结　语

本文给出了一种利用网格搜索法求算地球椭

球面上闪电位置的方法。实例计算表明，通过多

级搜索最小代价函数对应的位置，可以很快地趋

近于最终解。该方法无需初始值，通过多级搜索

的策略可以将计算量控制在合理的水平。由于计

算机运算速度的日益增长，利用该方法可准实时

地实现闪电定位。在未来的实际应用中，在给出

迭代算法初始值的情况下，利用该算法可避免迭

代算法容易发散的问题。
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