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摘　要：基于对大坝监测资料预测模型时变性的要求，在模型ＬＳ参数求解过程中引入遗忘因子，提出了能够

实现模型参数实时更新的ＩＷＲＬＳ算法。在此基础上，为使预测模型体现物理含义的同时实现滤波操作，在

Ｋａｌｍａｎ滤波方程组中融入统计模型、ＡＲＭＡ等多种方法，由此建立了考虑白色观测噪声的时变Ｋａｌｍａｎ预测

模型。实例分析表明，时变Ｋａｌｍａｎ模型拟合及预测精度均优于传统统计模型，为大坝监测资料的预测分析

提供了新思路。
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　　监测资料序列的建模分析是大坝安全监控分

析的重要组成部分［１］。因此，根据过去和现在的

监测资料建立预测模型来预测大坝将来的性态，

具有更实际的使用价值。仪器的自动化监测为信

息的获取提供了便利，然而，由于大坝性态影响因

素复杂以及自动化监测资料噪声的影响等，给资

料的建模分析和反分析带来了很大的困难，也很

大程度上影响了预测的准确性［２５］。从预测角度

考虑，要获得较好的预测效果，除了要充分依托现

有的物理力学概念清晰的传统统计模型外，所建

立的模型还要具备去噪（滤波）及时变功能（模型

参数具有时变性），以能及时准确地反映大坝结构

性态的改变。基于此种考虑，借鉴现代时间序列

分析［６］中用遗忘因子来突出近期资料、削弱早期

资料的贡献这一数据处理思想，提出了模型实现

参数实时更新的指数加权递推最小二乘估值公式

（ＩＷＲＬＳ算法）。在此基础上，为体现物理含义的

同时实现滤波操作，将统计模型［２］、ＡＲＭＡ
［３］等

方法引入Ｋａｌｍａｎ滤波方程组中，以自变量建立

状态方程，以ＡＲＭＡ反映其状态变化特性，以因

变量建立观测方程，并以统计模型表征其物理含

义，借助Ｋａｌｍａｎ方程组特有的滤波功能建立了

考虑白色观测噪声的时变Ｋａｌｍａｎ预测模型。

１　时变犓犪犾犿犪狀预测模型的建立

Ｋａｌｍａｎ滤波方程组的关键是确定状态方程

和观测方程以及方程的各参数（包括状态转移阵

Φ、控制转移阵 Β、输入噪声阵 Γ 及观测阵Η

等），通过构建适当的状态方程和观测方程，可以

体现明确的物理含义。在采用Ｋａｌｍａｎ滤波分析

大坝的监测资料中，文献［７］以观测点的位置及它

们的运动速度为状态向量，以瞬时加速度为动态

噪声建立状态方程和观测方程，这只相当于建立

了监测资料本身的 ＡＲＭＡ模型，无法反映自变

量与因变量之间的影响关系。文献［８］将传统统

计模型引入观测方程，相应的统计模型参数作为

观测向量，但状态方程中的状态转移矩阵人为取

为单位矩阵过于简单，无法反映各状态因素间的

复杂关系，而且其他参数的确定也进行了简化。

从具体的物理背景出发，由于 ＡＲＭＡ能够很好

地刻画状态因素本身的变化规律，因此，本文在前
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人研究的基础上，以 ＡＲＭＡ描述自变量各因素

间的关系，通过求解 ＡＲＭＡ方程确定状态转移

矩阵；以传统统计模型表征观测方程；对状态方程

和观测方程中的白噪声方差采取误差方差估计，

以反映实际问题真正的误差，由此建立了采用时

变ＩＷＲＬＳ求解模型参数的大坝监测资料时变

Ｋａｌｍａｎ预测模型。

１．１　状态方程与观测方程的建立

对大坝监测量物理机理及监测资料的分析可

知［１］，大坝性态监测值δ的统计模型主要由水压

分量δ犎、温度分量δ犜、降雨分量δ犘和时效分量δθ

组成，即

δ＝δ犎 ＋δ犜 ＋δ犘 ＋δθ （１）

　　为反映自变量与因变量的影响关系，将统计

模型（１）引入Ｋａｌｍａｎ滤波系统：

狓（狋＋１）＝Φ狓（狋）＋犅狌（狋）＋Γω（狋）

狔（狋）＝犎狓（狋）＋狏（狋｛ ）
（２）

其中，狋为离散时间；状态向量狓（狋）∈犚
狀；状态的

观测信号狔（狋）∈犚
犿；输入噪声向量（即随机扰动

类）ω（狋）∈犚
狉；观测噪声向量（即观测随机误差

类）狏（狋）∈犚
犿；确定性（非随机）控制输入向量

狌（狋）∈犚狆已知；Φ狀×狀为状态转移矩阵；犅狀×狆为控制

转移矩阵；Γ狀×狉为输入噪声矩阵；犎犿×狀为观测阵。

令状态向量狓（狋）和观测矩阵Η 分别为：

狓＝ ［１，δ犎，δ犜，δ犘，δθ］
Ｔ
＝ ［狓０，狓１，…，狓狀］

Ｔ

Η ＝ ［犺０，犺１，…，犺狀］

（３）

其中，犺０为常数项；狀为统计模型自变量分量的个

数（不包含常数项）；犺犻（犻＝０，１，…，狀）为统计模型自

变量分量的参数；δ犎、δ犜、δ犘、δθ分别为水压状态向

量、温度状态向量、降雨状态向量及时效状态向量。

为便于Ｋａｌｍａｎ滤波，把狓（狋）看成是包含有

动态噪声的状态向量。考虑自变量监测系统存在

系统监测误差的可能性较小，令控制输入向量

狌（狋）＝０（实际情况中，若明确狌（狋）的形式，应予以

适当考虑），只考虑状态向量输入白噪声的影响，

可得大坝监测资料的状态方程和观测方程为：

狓（狋＋１）＝Φ狓（狋）＋Γω（狋）

δ（狋）＝Η狓（狋）＋狏（狋｛ ）
（４）

其中，状态向量狓（狋）狀×１、观测信号δ（狋）（标量）、输

入噪声ω（狋）取为均值为０、方差犙＝１的白噪声；

观测噪声υ（狋）为均值为０、方差为犚的白噪声。

１．２　参数的确定

对式（４）中第一式重要的是确定状态转移矩

阵Φ，Φ一定程度上表征了各状态向量之间的相

关关系。文献［８］取状态转移矩阵Φ 为单位阵，

即以狋时刻的状态向量作为狋＋１时刻状态向量

的最优预报，虽然计算简便，但有很大的近似成

分。文献［９］通过狓（狋＋１）与狓（狋）各时刻的取值

用ＬＳ估值求得Φ，所求得的Φ 在数学意义上更

为精确，但从物理概念上不好作出解释（如若 Φ

的非对角元素Φ犻犼≠０，犻≠犼，即说明狓犻与狓犼有相关

性，就是指水压向量、温度向量等各向量间存在相

关性，这与统计模型认为状态向量自相关矛盾；若

计算所得Φ的对角元素Φ犻犻≠１，即意味狓犻与其本

身不是完全自相关，这也是不合理的）。为表征各

状态分量除自相关外与其他状态分量相互独立的

物理含义，选取Φ为对角阵，并以ＡＲＭＡ表述状

态因素随时间变化的规律，即令

Φ＝Φ１＋狇
－１
Φ２＋…＋狇

－（狀

－１）
Φ狀



其中，狇
－１为单位滞后算子；Φ犻（犻＝１，…，狀－１）为

对角阵。对状态向量中的每个元素狓犻（狋）（犻＝１，

…，狀），可分别建立ＡＲＭＡ模型：

犃犻（狇
－１）狓犻（狋）＝Γ犻ω（狋）

其中，犃犻（狇
－１）＝１＋犪犻１狇

－１＋…＋犪犻狀狇
－狀。为便于

计算，取狀＝２（实例分析表明，狀＝２可完全满足精

度要求），则对每个分量狓犻（狋）（犻＝１，…，狀）的ＡＲ

ＭＡ模型为：

狓犻（狋＋１）＝犪犻１狓犻（狋）＋犪犻２狓犻（狋－１）＋Γ犻ω（狋）

　　令θ＝［犪犻１，犪犻２］
Ｔ，φ

Ｔ（狋）＝［狓犻（狋－１），狓犻（狋－

２）］，狔（狋）＝狓犻（狋），考虑时变效应，由ＩＷＲＬＳ参数

估值公式可求得模型参数犪犻１、犪犻２、Γ犻（各个元素

狓犻（狋）的遗忘因子λ犻根据实际情况选取）。对于常

数项状态变量狓０（狋）＝１，直接采用犪０１＝１，犪０２＝

０，Γ０＝０，由此可求得状态方程为：

狓（狋＋１）＝Φ狓（狋）＋Γ狑（狋）＝

　　（Φ１＋狇
－１
Φ２）狓（狋）＋Γ狑（狋）＝

Φ１狓（狋）＋Φ２狓（狋－１）＋Γ狑（狋）

其中，

Φ＝

犪０１＋狇
－１犪０２

犪１１＋狇
－１犪１２



犪狀１＋狇
－１犪狀

熿

燀

燄

燅２

Φ１ ＝

犪０１

犪１１



犪狀

熿

燀

燄

燅１

Φ２ ＝

犪０２

犪２１



犪狀

熿

燀

燄

燅２

２９９
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　　对式（４）第二式，为表征物理含义，观测矩阵主

要还是采用统计模型参数，为反映时变特点，参数

的确定采用ＩＷＲＬＳ参数估值公式（遗忘因子λ根

据实际情况选取），由此可确定大坝安全监测数据

的时变Ｋａｌｍａｎ模型（状态方程和观测方程）为：

狓（狋＋１）＝Φ１（狋）狓（狋）＋Φ２（狋）狓（狋）＋Γ（狋）狑（狋）

δ（狋）＝Η（狋）狓（狋）＋υ（狋｛ ）

（５）

其中，υ（狋）的方差阵犚的确定如下：由δ（狋）的维数

可知，犚为标量，将υ（狋）看作观测方程误差，即

υ（狋）＝δ（狋）－ Η（狋）狓（狋），则在狋时刻，犚的估值

犚^（狋）可以由误差方差估计：

犚^（狋）＝σ^
２
ν（狋）＝

１

狋∑
狋

犻＝１

ν^
２（犻）＝

σ^
２
ν（狋－１）＋ ［^ν

２（狋）－^σ
２
ν（狋－１）］

２／狋

这样可反映实际问题的真正误差。另外，ω（狋）的

方差取犙＝１。

１．３　时变犓犪犾犿犪狀模型预报器

Ｋａｌｍａｎ模型参数 Φ（狋）、犎（狋）未知，已知有

限个状态变量（狓（狋），狓（狋－１），…）和观测值

（δ（狋），δ（狋－１），…），构建带观测噪声的时变Ｋａｌ

ｍａｎ模型（５）的Ｋａｌｍａｎ预报器狔^（狋＋犽｜狋）由如下

４步组成：① 狓^（０｜０）取监测初始日状态变量。

② 用ＩＷＲＬＳ参数估值公式估计狋≥１时刻状态

方程转移矩阵 Φ^（狋）、输入噪声阵 Γ^（狋）和观测方

程观测阵 犎^（狋），由此建立狋时刻的Ｋａｌｍａｎ模型

为：

狓（狋＋１）＝ Φ^ （狋）狓（狋）＋Γ^（狋）狑（狋）

δ（狋）＝ Η^ （狋）狓（狋）＋狏（狋｛ ）

并计算狋时刻狏 （狋）的估值方差 犚^（狋）（犙＝１）。

③ 将估值 Φ^ （狋）、^犎 （狋）、^犚 （狋）及犙＝１代入递推

Ｋａｌｍａｎ滤波器及预报器，可得狋时刻滤波值狓^ （狋

＋１｜狋＋１），超前一步递推Ｋａｌｍａｎ预报器狓^（狋＋１

｜狋）及超前犽＞１步 Ｋａｌｍａｎ预报值 狓^ （狋＋犽｜狋）。

需要 说 明 的 是，由 于 Φ^ （狋）＝ Φ^ １（狋）＋

狇
－１
Φ^ ２（狋），故在滤波器及预报器中，有：

Φ狓^ （狋狘狋－１）＝Φ１狓^（狋狘狋－１）＋

Φ２狓^（狋－１狘狋－２）

ΦΡ （狋狘狋）ΦΤ ＝Φ１Ρ（狋狘狋）Φ
Τ
１＋

Φ２Ρ（狋－１狘狋－１）Φ
Τ
２

ΦΚ （狋）＝Φ１Κ （狋）＋Φ２Κ （狋）

Φ
犽－１狓^（狋＋１｜狋）（犽＞１）由下式递推：

狓^（狋狘狋－１）＝Φ狓^ （狋－１狘狋－１），

狓^（狋＋１狘狋）＝Φ狓^ （狋狘狋）

Φ狓^ （狋＋１狘狋）＝狓^（狋＋２狘狋）＝ 　　　

Φ１狓^（狋＋１狘狋）＋Φ２狓^（狋狘狋－１）

Φ
２狓^（狋＋１狘狋）＝狓^（狋＋３狘狋）＝ 　　　

Φ１狓^（狋＋２狘狋）＋Φ２狓^（狋＋１狘狋）

…

Φ
犽－１狓^（狋＋１狘狋）＝狓^（狋＋犽狘狋）＝

Φ１狓^（狋＋犽－１狘狋）＋Φ２狓^（狋＋犽－２狘狋）

④ 将狓^（狋＋犽｜狋）代入时变Ｋａｌｍａｎ模型（５），可得

时变滤波值及预报值：

δ^（狋狘狋）＝ Η^（狋）^狓（狋狘狋）

δ^（狋＋犽狘狋）＝ Η^（狋）^狓（狋＋犽狘狋）

随着狋＋１时刻数据序列及参数估值的更新，重复

进行第②～④步。

２　实例分析

选取某拱坝初始蓄水时段的右１／４拱坝段

２１１４ｍ高程处的１６２１１４位移测点的径向位移

处次蓄水期监测值进行分析，考虑测点及环境量

监测起始日及初次蓄水阶段的特点，选取分析监

测时间序列为１９９７１２至２００１５３１。在模型的

时变参数求解及拟合中，时变参数的拟合更新选

取时段１９９７１２至２０００１２３１、２００１１１至２００１

５３１作为预测时段。

根据拱坝特性及监测数据特征，建立径向位

移δ的统计模型为：

δ＝δ犎 ＋δ犜 ＋δθ＝∑
４

犻＝１

犪１ 犎
犻
狌－犎

犻
狌（ ）［ ］０ ＋

　∑
２

犻＝１

犫１犻 ｓｉｎ
２π犻犜
３６５

－ｓｉｎ
２π犻犜０（ ）３６５［ ＋

　犫２犻 ｃｏｓ
２π犻犜
３６５

－ｃｏｓ
２π犻犜０（ ）］３６５

＋

　犮１ θ－θ（ ）０ ＋犮２ ｌｎθ－ｌｎθ（ ）０ ＋犪０

其中，犎狌、犎狌０为监测日、始测日所对应的上游水

头，即水位测值与坝底高程之差；犜为位移监测日

到始测日的累计天数；犜０为建模资料系列第一个监

测日到始测日的累计天数；θ为位移监测日至始测

日的累计天数犜除以１００；θ０为建模资料系列第一

个监测日到始测日的累计天数犜０除以１００。

则对于时变Ｋａｌｍａｎ模型（５），狀＝１０，状态向

量狓（狋）１１×１和观测矩阵Η１×１１分别为：

狓＝ ［１，Η
１
狌－Η

１
狌０，Η

２
狌－Η

２
狌０，Η

３
狌－Η

３
狌０，Η

４
狌－Η

４
狌０，

ｓｉｎ（
２π犜
３６５

）－ｓｉｎ（
２π犜０
３６５

），ｃｏｓ（
２π犜
３６５
）－ｃｏｓ（

２π犜０
３６５

），

ｓｉｎ（
４π犜
３６５
）－ｓｉｎ（

４π犜０
３６５

），ｃｏｓ（
４π犜
３６５

）－ｃｏｓ（
４π犜０
３６５

），

　　　　　　θ－θ０，ｌｎθ－ｌｎθ０］
Ｔ

Η ＝ ［犪０，犪１，犪２，犪３，犪４，犫１１，犫２１，犫１２，犫２２，犮１，犮２］

３９９
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　　统计模型采用逐步回归分析的ＬＳ法，时变

Ｋａｌｍａｎ模型采用ＩＷＲＬＳ参数估值（其中遗忘因

子无经验取值，经试算效果对比，选取λ＝

０．９９２），由此对所选测点位移的实测资料进行分

析，所得拟合模型的复相关系数（犚）和标准差（犛）

见表１，拟合及预测过程线如图１、图２所示，部分

预测时段实测、预测值列于表２。

表１　 拟合模型特征值表

Ｔａｂ．１　ＭｏｄｅｌＥｉｇｅｎｖａｌｕｅ

参数 统计模型 时变Ｋａｌｍａｎ模型

犚 ０．９４２ ０．９９４

犛 ０．５３７ ０．２２０

图１　模型拟合过程线

Ｆｉｇ．１　ＦｉｔｔｉｎｇＲｅｓｕｌｔｓｏｆＴｗｏＭｏｄｅｌｓ

图２　模型预测过程线

Ｆｉｇ．２　ＰｒｅｄｉｃｔｉｏｎＲｅｓｕｌｔｓｏｆＴｗｏＭｏｄｅｌｓ

表２　模型部分预测值对比

Ｔａｂ．２　ＰｒｅｄｉｃｔｉｏｎＶａｌｕｅｓ

日期 实测值／ｍｍ
预测值／ｍｍ

传统模型 时变Ｋａｌｍａｎ模型

２００１１３ ９．６２ ８．６１ ９．１７

２００１２６ ９．７７ ９．４４ １０．１４

２００１２２８ ９．４９ ９．３０ ９．７２

２００１３２１ １０．１２ ９．４２ １０．１９

２００１４１７ １０．０５ ９．４３ １０．１５

２００１５１ １０．３１ ９．５７ １０．１６

２００１５２３ １０．５７ １０．３１ １０．７８

　　由图１、图２、表１、表２可以看出，大坝在初

次蓄水时，由于采用分期分段抬高水位的方式，坝

体性态的监测资料平稳性较差，而且坝体受初次

水压的影响，整体性态也会随着水位的升高有所

改变，也就是说，此时所建立的大坝监控模型中的

各个模型参数不可能保持不变，应具有时变性，需

要随着大坝性态的改变实时进行更新，因而用传

统的统计模型拟合预测的精度不高。而由于时变

Ｋａｌｍａｎ模型的参数根据蓄水期的实际情况通过

遗忘矩阵进行了实时更新，除了模型初期由于数

据较少、参数估值误差较大、拟合效果较差外，其

余时段的拟合及预测效果均优于传统统计模型，

这说明时变Ｋａｌｍａｎ模型在反映大坝性态变化上

更优越，不仅能够满足常规分析预测的要求，也更

适合于特殊时期监测资料的分析。
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