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摘　要：提出了一种基于犎／α／犃和粒子群优化（ＰＳＯ）算法的全极化ＳＡＲ数据非监督分类方法。该方法利用

犎／α／犃对全极化ＳＡＲ数据进行基于散射机理的初分类，计算各类别的聚类中心，并利用计算结果对ＰＳＯ算

法进行初始化，然后采用ＰＳＯ对极化ＳＡＲ数据进行迭代分类。在运算过程中，引入了基于最大似然准则的

复 Ｗｉｓｈａｒｔ距离，以提高分类器的性能。实验结果验证了该算法的有效性，所提出算法的分类结果优于传统

的 Ｗｉｓｈａｒｔ犎／α／犃分类方法。
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　　当前，极化ＳＡＲ图像分类已经成为遥感数据

处理的重要内容。与单极化ＳＡＲ数据相比，全极

化ＳＡＲ数据包含了更丰富的目标信息，其数据形

式主要采用散射矩阵。散射矩阵能比较完整地记

录地物在ＨＨ、ＨＶ、ＶＶ、ＶＨ四个极化状态下的

散射回波信息，反映了地物的极化特性。对于全

极化ＳＡＲ影像，由于有时无法获取其相对应的真

实地物的分布情况，且通常选取具有特征的训练

样本也比较困难，因此，全极化ＳＡＲ图像分类研

究的重点是非监督分类。目前，比较常用的分解

方法有 Ｋｒｏｇａｇｅｒ分解、Ｃａｍｅｒｏｎ分解、Ｃｌｏｕｄｅ

Ｐｏｔｔｉｅｒ分解以及Ｆｒｅｅｍａｎ分解等
［１］。其中最为

著名的是ＣｌｏｕｄｅＰｏｔｔｉｅｒ分解，该方法利用散射

熵犎 和散射角α组成的犎α平面将全极化ＳＡＲ

数据分成８个类别
［２］。此后，Ｐｏｔｔｉｅｒ又结合 犎／

α／犃 和复 Ｗｉｓｈａｒｔ分布最大似然估计提出了

Ｗｉｓｈａｒｔ犎／α／犃非监督分类
［３］，这也是目前使用

最为广泛的全极化ＳＡＲ数据分类算法。但是这

种方法不能很好地保持地物的极化特性，而且在

分类精度上仍有可提高的空间。在国内，杨磊等

人通过在求解各类地物相关矩阵时进行数值加权

的方法改进了 Ｗｉｓｈａｒｔ犎／α／犃算法，使得分类精

度有一定提高［４］；刘秀清和杨汝良提出了基于全

极化ＳＡＲ极化特征分解及最大似然估计的非监

督分类迭代算法［５］；邹同元等人则提出了一种建

立在ｍｅａｎｓｈｉｆｔ过分割结果区域上的极化ＳＡＲ

数据非监督分类算法，获得了较为满意的分类结

果［６］。另外，张海剑等人提出了一种基于四分量

散射模型的多极化ＳＡＲ图像散射分类方法
［７］。

为了进一步改善全极化ＳＡＲ数据分类的效果，本

文提出了一种新的基于犎／α／犃初始化和ＰＳＯ算

法的全极化ＳＡＲ图像的非监督分类算法。

１　犎／α／犃方法

全极化ＳＡＲ测量的目标极化数据可以表示

为Ｓｉｎｃｌａｉｒ散射矩阵（犛矩阵）。通过数学方法对

犛矩阵进行运算处理，能够推导出其相对应的极

化相干矩阵犜：

犜＝∑
３

犻＝１

λ犻犜犻 ＝λ１犲１犲
犎
１ ＋λ２犲２犲

犎
２ ＋λ３犲３犲

犎
３ （１）

其中，λ犻为极化相干矩阵的特征值；犲犻为特征向量。
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１９９７年，Ｃｌｏｕｄｅ等人提出对极化相干矩阵犜

进行特征分解，得到了目标的散射熵犎 和散射角

α
［８］，利用犎 和α 能够组成一个二维特征空间。

Ｃｌｏｕｄｅ等人在大量实验的基础上给出了 犎α平

面的类别划分界限，从而将全极化ＳＡＲ数据分成

８个类别。为了进一步细化极化ＳＡＲ数据类别，

１９９８年，Ｐｏｔｔｉｅｒ又根据特征值λ２、λ３提出了一个

新的特征参数，即各向异性度犃，犃表征了目标散

射各向异性的程度。至此，由犎、α和犃 组成了一

个三维特征空间。利用这个三维特征空间，对全

极化ＳＡＲ数据的类别划分也增加到１６类。

２　基于 犕犔的复 犠犻狊犺犪狉狋距离

对Ｓｉｎｃｌａｉｒ散射矩阵进行Ｐａｕｌｉ基分解，可以

得到服从多元复圆高斯分布的散射矢量犺。令犺

所对应的相干矩阵为犜′。根据文献［９，１０］可知，

对犜′经多视处理后，可以得到服从复 Ｗｉｓｈａｒｔ分

布的极化相干矩阵犜。令犞犿为某一类别的聚类

中心，根据最大似然准则（ｍａｘｉｍｕｍｌｉｋｅｌｉｈｏｏｄ，

ＭＬ），可得任一像元到聚类中心的距离为
［１１］：

犱（〈犜〉，犞犿）＝狀ｌｎ犞犿 ＋ｔｒ（犞
－１
犿 〈犜［ ］〉）－

ｌｎ犘（犿［ ］） （２）

式中，犘（犿）是类别犿的先验概率。一般来讲，在

没有先验知识的情况下，认为犿个类别的先验概

率犘（犿）是相等的，这样，式（７）可简化为：

犱（〈犜〉，犞犿）＝ｌｎ犞犿 ＋ｔｒ（犞
－１
犿 〈犜〉） （３）

因此，当某一像元的极化相干矩阵犜满足：

犱（〈犜〉，犞犿）≤犱（〈犜〉，犞犼），犼＝１，…，犕，犿≠犼

（４）

则可以将该像元归属为类别犿。

对全极化ＳＡＲ数据而言，式（３）是一种更加

合理的计算像元到聚类中心距离的方法。与传统

的欧氏距离相比，这种方法的优势在于它是基于

散射机理得出的，并且更好地利用了数据的极化

信息。

３　犘犛犗算法

目前，ＰＳＯ（ｐａｒｔｉｃｌｅｓｗａｒｍｏｐｔｉｍｉｚａｔｉｏｎ）算

法［１２］在多光谱等遥感影像分类问题中已有比较

广泛的应用［１３，１４］，然而，在极化ＳＡＲ数据处理问

题中，使用较少。

设在一个犇维空间中初始化犿 个粒子，第犻

个 粒 子 的 位 置 可 表 示 为 狓犻 ＝

狓犻１，…，狓犻犱，…，狓｛ ｝犻犇
Ｔ，犱＝１，２，…，犇，其速度为

狏犻＝ 狏犻１，…，狏犻犱，…狏｛ ｝犻犇
Ｔ。该粒子所经过的个体

最优位置为犘犻＝ 犘犻１，…，犘犻犱，…，犘｛ ｝犻犇
Ｔ，全局最

优位置为犌＝ 犌１，…，犌犱，…，犌｛ ｝犇
Ｔ。在迭代过程

中，粒子按照如下公式运动［１０］：

狏犻犱 ＝狑·狏犻犱 ＋犮１·ｒａｎｄ（）·（犘犻犱 －狓犻犱）＋

　　　犮２·ｒａｎｄ（）·（犌犱－狓犻犱）

狓犻犱 ＝狓犻犱 ＋狏

烅

烄

烆 犻犱

（５）

式中，狏犻犱和狓犻犱分别为第犻个粒子在第犱 维上的

速度和位置；狑 为惯性权重；犮为加速度常数；

ｒａｎｄ（）为０至１之间的随机数。通常，狑 随迭代

次数的增加而递减，犮为常数２．０。在全极化

ＳＡＲ数据聚类问题中，对每个像元的类别划分应

由该像元到各个类别中心的距离决定。而粒子的

位置则表示各个类别的聚类中心，因此，可以用所

有像元到其对应中心的距离之和来评估粒子的优

劣，一般用其倒数来表示：

犑＝
１

∑
狀

犼＝１
∑
犡犻∈狑犼

犱（犡犻，犡
狑
犼）

，犼＝１，２，…，狀 （６）

其中，犑又称为粒子的适应度值；狀为类别个数；

犡犻表示属于类别犼的第犻个像元；犡
狑
犼为第犼个类

别的聚类中心，可通过计算属于该类别所有像元

的平均值得到；犱（犡犻，犡
狑
犼）表示像元犡犻到犡

狑
犼的

距离，可根据式（３）计算。易知，犑值越大，说明粒

子的位置越好；反之，则越差。

４　基于犎／α／犃 和犘犛犗的非监督分

类算法

　　基于犎／α／犃和ＰＳＯ算法的全极化ＳＡＲ数

据非监督分类算法的具体步骤如下：① 预处理全

极化ＳＡＲ数据，计算出式（１）中的极化相干矩阵

犜；② 对犜进行特征分解，利用得到的特征值和特

征向量计算出犎、α和犃；③ 利用犎／α／犃方法对

全极化ＳＡＲ数据进行初分类，并计算出各类的聚

类中心犡狑犼；④ 采用步骤③的结果初始化粒子

群，即将得到的初始聚类中心赋值给粒子的位置；

⑤ 根据式（６）计算所有粒子的适应度值，然后更

新各粒子的个体最优位置及群体的全局最优位

置；⑥按照式（５）更新所有粒子的速度和位置；

⑦ 对每个粒子，按照如下步骤进行运算：每一个

像元根据粒子在每个类别中的位置和 Ｗｉｓｈａｒｔ分

布最大似然估计法进行归类，即按照式（３）计算像

元到每个聚类中心的距离，再利用式（４）判断该像

元所属的类别；计算所有类别的聚类中心，并用计

２４９
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算结果更新粒子的位置；⑧ 执行步骤⑤；⑨ 如果

全局最优位置对应的适应度值满足要求或达到规

定的迭代次数，则输出当前全极化ＳＡＲ数据的分

类结果，并退出运算，否则返回步骤⑥继续执行。

５　实验结果及分析

为了验证本文所提算法的有效性，采用１９９２

年美国ＳａｎＦｒａｎｃｉｓｃｏＢａｙ地区ＮＡＳＡ／ＪＰＬＡＩＲ

ＳＡＲ获得的Ｌ波段的数据进行分类实验，数据大

小为９００像素×１０２４像素。首先，采用改进的

Ｌｅｅ滤波算法
［１５］对全极化ＳＡＲ数据进行３×３的

滤波处理，以去除噪声斑点。实验数据基于Ｐａｕｌｉ

基，原始图像及滤波结果如插页Ⅰ彩图１所示，然

后进行ＣｌｏｕｄｅＰｏｔｔｉｅｒ特征分解，再使用 犎／α／犃

方法对数据进行初分类，这样就得到了１６个类别

的分类结果（如插页Ⅰ彩图２所示），最后采用

ＰＳＯ算法进行迭代分类，分类结果如插页Ⅰ彩图

３所示（类别数为１６）。

从插页Ⅰ彩图２可以看出，犎／α／犃初分类的

结果大致反映出了地物的基本特征。与实际地物

相比较，主要的地物类别基本被划分出来，由犎／

α／犃分类结果计算出的聚类中心已经接近实际目

标值。因此，在使用ＰＳＯ算法时，以得到的初始

聚类中心为参考，对粒子的位置进行赋值。

在粒子群算法所涉及的所有参数中，通常对

分类结果有影响的几个参数分别是粒子个数、惯

性权重和最大迭代次数。为了平衡随机因素的作

用，根据Ｓｈｉ等人的研究结果，一般情况下设置犮１

＝犮２＝２．０
［１６］。同时，由于待处理问题的不同及

待分类数据类型的差别，导致了在粒子群算法中

粒子个数、惯性权重和最大迭代次数这三个参数

的设置目前还没有特定的设置值。为此，本文实

施了几组依据不同参数设置的对比实验，以探索

在对极化ＳＡＲ数据进行非监督分类的问题中粒

子群算法的合理参数设置。实验结果数据如表１

所示。

表１中采取的对比方法是：固定两个参数，改

变第三个参数，从而发现第三个参数对最终的适

应度值的影响。通过深入的比较可以发现，在粒

子群算法中，随着粒子个数和迭代次数的增加，最

终所获得的适应度值越大。从理论上讲，粒子群

算法的迭代过程可以认为是粒子群体在解空间中

搜索目标解的过程，而粒子个数和搜索次数的增

加会一定程度上提高最终搜索结果的质量。惯性

权重是用来确定在粒子移动过程中自身的原有速

度对新速度值的影响程度。该参数对最终的适应

度值的影响不是简单的线性关系，通常合理的惯

性权重不仅能够减少算法运行 的时间，而且可以

提高最终的适应度值。参照表１的对比数据可以

发现，对本文所采用的极化ＳＡＲ数据来讲，惯性

权重值设置为０．４是比较合理的。当然，纵观这

几组实验所得到的最终适应度值也可以发现，它

们的数值相差并不大。这反映了粒子群算法在处

理对极化ＳＡＲ数据进行监督分类问题中具备很

强的健壮性。基于上述分析，本文在对ＳａｎＦｒａｎ

ｃｉｓｃｏＢａｙ地区的极化ＳＡＲ影像进行非监督分类

时，为了提高算法的运行效率，算法参数设置如

下：粒子个数犿＝６，惯性权重狑＝０．４，加速度常

数犮１＝犮２＝２．０，最大迭代次数为２０。

表１　基于不同参数设置的犘犛犗算法运行结果对比表

Ｔａｂ．１　ＣｏｍｐａｒｉｓｏｎｏｆａＧｒｏｕｐｏｆＰＳＯＲｕｎｎｉｎｇＲｅｓｕｌｔｓ

ＢａｓｅｄｏｎＤｉｆｆｅｒｅｎｔＰａｒａｍｅｔｅｒｓＳｅｔｔｉｎｇ

编号
粒子个数

犿

惯性权重

狑

最大迭

代次数

最终适应

度值

适应度

比值

１ ５ ０．５ １０ ６５９８．０８４３０ ０．９８６８

２ １０ ０．５ １０ ６６２２．２０４０８ ０．９９０５

３ １０ ０．５ １５ ６６４０．３２１４９ ０．９９３２

４ １０ ０．４ １５ ６６８６．０３４５２ １

５ １０ ０．３ １５ ６６８３．０４３１８ ０．９９９５

　　对比插页Ⅰ彩图２和彩图３可以发现，借助

ＰＳＯ算法的优化功能，犎／α／犃初分类结果得到了

明显的改善。为了进一步验证该算法的有效性，

采用常规的 Ｗｉｓｈａｒｔ犎／α／犃 方法对同一全极化

ＳＡＲ数据进行分类（见插页Ⅰ彩图４），并对两种

分类结果进行了对比分析。从目视判读角度来

看，两种算法均能将实验地区的极化ＳＡＲ影像分

为１６个类别。然而，一些细节却能够反映出两种

算法在分类性能上的差异：一方面，通过仔细对比

插页Ⅰ彩图３、彩图４中海岸线附近的分类情况

可知，ＰＳＯ犎／α／犃 算法的分类结果能够将近海

区的地物分成三个类别，而 Ｗｉｓｈａｒｔ犎／α／犃算法

的分类结果中的对应区域只有两个类别；另一方

面，对比两图中的绿色部分可以发现，插页Ⅰ彩图

３中，无论是植被的类别，还是纹理信息，比插页

Ⅰ彩图４更为丰富。

为了进一步对比插页Ⅰ彩图３、彩图４的分

类结果，本文以实际地物类别为参照，将以上两种

方法的分类结果分别进行了类别合并，得到了三

个地物类别（植被、建筑、海水）和未分类区域。如

插页Ⅰ彩图５所示，图中绿色表示植被区，红色表

示建筑区，蓝色表示海水，黄色为未分类噪声区。

一般来讲，非监督分类的分类结果在进行类别合

３４９
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并后会表现出较高的精度。而采用目视手段对比

插页Ⅰ彩图５（ａ）和５（ｂ）可以发现，两种分类结果

的区别并不明显。为了更加精确且客观地分析两

种分类结果的精度情况，本文根据实际地物的类

别选取了４５７９７６个像元进行精度和Ｋａｐｐａ系数

的对比，结果如表２所示。从表２可以看出，尽管

本文算法的建筑类别的精度低于 Ｗｉｓｈａｒｔ犎／α／

犃 方 法，但 总 体 精 度 和 Ｋａｐｐａ 系 数 均 优 于

Ｗｉｓｈａｒｔ犎／α／犃 方法。虽然 Ｗｉｓｈａｒｔ犎／α／犃 算

法和本文算法对初始类别的划 分都依赖于固定

的三维特征空间的边界条件，但是由于ＰＳＯ算法

具备在复杂问题中求解的能力，本文算法能够通

过比较全局最优和局部最优搜索最佳聚类中心，

而 Ｗｉｓｈａｒｔ犎／α／犃则只能通过自身迭代过程寻

找聚类中心。

此外，由于在算法运算过程中，运行时间与算

法迭代次数呈正比，因此为了分析本文算法在时

间复杂度上的规律，实验中采用迭代次数来反映

耗费的时间。插页Ⅰ彩图６表示了全局适应度值

随迭代次数的变化曲线。可以看出，在算法迭代

的初始阶段，适应度值的增长速度很快，而后趋于

缓慢增长。这说明本文算法在对极化ＳＡＲ影像

的非监督分类问题中，能在较少的迭代次数内收

敛。基于ＰＳＯ犎／α／犃 算法的这种特性，一般在

进行分类处理时，算法的最大迭代次数没有必要

设置过大。如插页Ⅰ彩图６所示，当算法完成９

次迭代时，适应度增长已经趋于平稳。

表２　犘犛犗犎／α／犃和 犠犻狊犺犪狉狋犎／α／犃分类

结果的精度和Ｋａｐｐａ系数对比表

Ｔａｂ．２　ＣｏｍｐａｒｉｓｏｎｏｆＣｌａｓｓｉｆｉｃａｔｉｏｎＡｃｃｕｒａｃｙａｎｄＫａｐｐａ

ＣｏｅｆｆｉｃｉｅｎｔｏｆＰＳＯ犎／α／犃ａｎｄＷｉｓｈａｒｔ犎／α／犃

算法 植被／％ 建筑／％ 海水／％ 总体精度／％ Ｋａｐｐａ系数

ＰＳＯ

犎／α／犃
９２．４４ ９６．６５ ９９．１７ ９６．４９ ０．９３２３

Ｗｉｓｈａｒｔ

犎／α／犃
９０．８３ ９８．３６ ９８．２０ ９５．３６ ０．９１１１
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