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Spatiales, CNES)4E 4 B #7"E — A JF 32 4 52 8 OSB = e 69 AF X ALH) ,IEZ T 2 M % 2 RT PPP-ARM LR A . ¥
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GPS/Galileo #8142 OSB /= & 48 2 348 T 0.1 A ,BDS # & vk £ T8 % & , GPS/Galileo/BDS B F 34 4% /£ £ (standard
deviation, STD) % %] # 0.085.0.117.0.228 J& ;i@ it OSB % £ 2L & , GPS/Galileo/BDS T 2 5% A v % A K JE 3% £ 80,
HLAEFT025 B Re)E 5o H A4 92.37% .95.88% .86.58% A= 88.40% .91.53% .87.42% , 7T i#% X PPP £ £ B £ 69 &
Ko #A % GNSS % 33k 5 M 43 HIEL RT PPP-ARE 5 R, 4R A9, A T CNES %8 OSB = & 7T %03 & B K
K RT PPP-AR#) EAzA5 B ,GPS+ Galileo+ BDS = 2449 RT PPP-AR B2 Z £ & b K F @4 H 4 1.16 cm.0.95 cm A=
2.78 cm, A8 b A B OSB 14 iE 89 3% 5 i PPP 4 & ,RT PPP-AR ¢  $L ih 18] 7T 45 42 40% vh £ ; & T CNES % #F OSB = &
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Abstract: Objectives: The observable—specific signal bias (OSB) provides a simple and unified way for
phase/pseudo-range bias correction in multi-frequency and multi-constellation global navigation satellite
system (GNSS) data processing. The quality of real-time OSB products directly affects the performance of
real-time precise point positioning (PPP) with ambiguity resolution (RT PPP-AR). The Centre National
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d'Etudes Spatiales (CNES) is currently the only research institution that publicly releases real-time OSB
products which promote the practical applications of multi—frequency and multi—constellation RT PPP-AR.
This study evaluate and analyze the quality of real-time OSB products from CNES and their impact on RT
PPP-AR solution, aiming to provide a reference for increasing RT PPP users. Method: After evaluating
the availability and stability of real-time OSB products from CNES, the ambiguity residual distribution situa-
tion were statistically analyzed. Simulated kinematic and static positioning experiments were carried out to
verify the positioning performance of RT PPP-AR based on real-time OSB products from CNES for several
different system combinations. Results: Experimental results show that real-time OSB products from
CNES demonstrate high availability, good stability and high accuracy. As for the availability of phase/
pseudo-range OSB products for GPS/Galileo/BDS systems reaches over 90% , but for some satellites
(such as G28, E02, E07, E21), the availability ranges from 40% to 80%. The stability of GPS/Galileo
phase OSB products is better than 0.1 cycles, while that of BDS is slightly lower. The daily average stan-
dard deviations (STD) for GPS/Galileo/BDS systems are 0.085, 0.117, and 0.228 cycles, respectively.
After applying OSB corrections, the residual ambiguity for wide—lane (WL) and narrow-lane (NL) of GPS/
Galileo/BDS satellites is small, with percentages within £0.25 cycles as follows: 92.4%, 95.9%, 86.6%
for WL, and 88.4%, 91.5%, 87.4% for NL, which satisfies the requirements for ambiguity fixing in PPP.
The real-time PPP-AR positioning accuracy using OSB products from CNES is validated with multi—
GNSS experiment observations. The results show that RT PPP-AR using real-time OSB products from
CNES can achieve centimeter—level positioning accuracy in dynamic mode. The positioning errors in the
east, north, and up directions for GPS+ Galileo+BDS RT PPP-AR are 1.16 cm, 0.95 cm, and 2.78 cm,
respectively. Compared to float PPP results without OSB correction, RT PPP-AR significantly reduces
the convergence time by more than 40%.Conclusion: Ambiguity resolution can be achieved under BDS
single system based on real-time OSB products from CNES. And the positioning accuracy is significantly
improved compared to float solution, while the fixing rate is around 94 % .

Key words: real-time precise point positioning; ambiguity resolution; observable specific signal bias;

multi—frequency and multi—constellation
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AR S TAE4 (real-time working group, RTWG)
It E XS IR 45 (real time service, RTS)™!, 2007
AERTWG IE 205 8 2 i 301 H (real time pilot
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FIAH AL it 22 DL 22 5318 i 2 (differential code bias,
DCB)"™ F1 A7 52 7N $ & s 22 (fractional cycle bias,
FCB) BRI, B —FAXEA . BiE GNSS
TEMURER 2 DCB I FCB Y i 28 80k i
Z AW R, N T IR S8 — 00w 22
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Table 1 Real-time Products Provided by Different ACs

B TERG 7 i ] B /s
GPS/GLONASS/ A ,
GMV ) Orbit/Clock/Code bias 5
Galileo/BDS
BKG GPS/GLONASS/ Orbit/ Code bias 60
B Galileo Clock 5
ESA GPS Orbit/Clock 5
GPS/GLONASS/
GFZ ) Orbit/Clock/Code bias
Galileo/BDS

Orbit/Clock/Code
GPS/GLONASS/ )

CNES bias/Phase bias
Galileo/BDS
ML 2 VTEC 60
CAS GPS/GLONASS/  Orbit/Clock/Code bias 5
] Galileo/BDS HLE R VTEC 60
GPS/GLONASS/ .
WHU ) Orbit/Clock 5
Galileo/BDS
DLR GPS/GLONASS/ Orbit/ Code bias 30
’ Galileo/BDS Clock 5
# : GMV (GMV Innovating Solutions) : GMV 43 #f #1 .0» ; ESA
(European Space Agency) : Bk %5 [i] &) ; GFZ (Deutsches Geo-

Forschungs Zentrum Potsdam) : % 2% 35 78 [ M 3R Bl 2% 6F 5%
i) s WHU(Wuhan University) : it i K% ; DLR(German Aero-
space Center) : fi [{ =i 0>
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Fig. 1 Real-time Generation and Broadcasting Process of CNES’s OSB Products

pi=per+di+ L m 2 e 155 22 by by B WL 22 gy HI A2 8P (intger re-
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HI O R FAR A2 OSB Bk IE 51 J5t i S i)

fF L2 05 VR I WL BB R 77 T
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(¢ + B)—(¢p,+ By)+p (P, + b))+

72+( P+ 65)= Ny + 1, w1 (6)
R A7 X0 1 ) T L S SR LA TE 0
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(ilf,.: Lt b, p=t+(asb,,+pBb,,) Ae(Nu - B — By N
Fa=La+ f+DCB., = £+ DCBG, FH TGS 5 3% 4 22 B0 0 D7 A 38
N =N+ (B, — Bi)+ aedied+ BeAse g =0, +ds, — dijgs +
[ by — b+ B+(DCB, . — DCB},) ] /A, An-(Ny £ B, v — By)
N =N, +(B,,— By)+ (8)
(b3 — b+ B+(DCB, . — DCB,) | /2, dtiss=dt' + b, e =dt' + asby + B b}
(3) (9)
#of | TF (fonosphere free) 77 76 i B8 J2 4 4 5 A K AAZ OSB i IE 215U ik AR A2 WLIE B 2
e— = f2) Jei A 2T 30 A A T S B O AE R
B=—f2/(fE—f7) W BsF AR B O TR P 2 A5 3 O R .
DCB, .=b,,—0b,, (4) asAi+(¢+ By)+ B (¢, + By)=p; +dt, —
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1) & LA
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N5H=Ni+ Bt [ —b.w+ y.+f+DCB,.. ] /A,
(14)
1.2 % %% PPP-AR E i & & #f FE B 7E 5k B
21t OSB = S B 1E i , BOWIE 2 800 R i
B 108 v B BRI AR A2 A58 R SR o Ok 3B LRI
JIE [ 5 K W% 52 B PPP-AR & 07, 1 26 1815 WL, #l
FHHMW 2414 2253 WL AR
A Nuw = (il = foLo) / (/i = f2) —
(AP +1P)/ (At 1)
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Nuw =N, — N;+ B, uw — B
(15)
A, Ayw N WL ; Nyw 7 WL B 2RO B
223 OSB = i & I J5 , WL AU/ B v AE 78 1Y
TR it A R AR A © I bR L — 2 T R
6] B2 2% (single difference, SD) 1 B3 v 77 76 1Y 4
WAL i B 4 A GR R A LA R R M
SD(Nww)=(N,, — N,.)—(N,, — N,.) (16)
A, Ny R AL s, Fils, 10 WL BB R (1 52 1]
Y
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SE 25 A T R AL Ty i, AR A A R AT 08 D
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cm) , Y45k I P 1 22 B A2 000 1 B R S B N AN
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2 ZWMERS

2.1 SCIG YR AN AL IR R R

T 1Al CNES $2 4 (19 52 B OSB 7= i it i
K I RT PPP-AR 2 3K E L PERE , L2 BR ¥ 5]
43 A 1) 50 A~ MGEX il 3 |, 2022-10-18—2022-11-
17 4E L H (day of year, DOY)291~321 4t} 31 d
08 I AR S RS % 7 i D CNES 1Y 52 i 5L
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i 1 BNC(BKG NTRIP Client) #2452 i 422 1
FEORAE o 250 I 3 4 Bk o0 A WL 2 BT o
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Fig. 2 Global Distribution Map of MGEX Stations

A S B Ak BRI AN 3R 2 PR o SR
+ IR = € I (extended Kalman filter, EKF) X} 4k
Bt #8E G B R LA bR Y
YERE B B, 2 28 AT AR e
FEAG T o AHALZE 28 R RSB BE Y R A A
O i 25 TR S A AL a0 AR AR TGS 2 4 i
igsld_wwww.atx 3CHF AT B IEPY ., TR &
SCHErh O R 45t Galileo A BDS (19 4% W HL it R 2%
AHAL TG B TE AR, Bt il AR 5 00 R B i Y
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1 1 17 5 R FH B0HE 3 B0 1 5 B P 2 5 ik
H5 ASRY 7 4 4 T8 DR v B AR HE R DR R R
B/ RY A B [E %, Ratio £ % Al Boot-
strapping I A Sy J] 7 BM 12 7 2 A5 BL A Y
FRE . A SC RT PPP-AR & i 52 5 % JH (1 %
GNSS ZG WM F : GPS: C1W . L1C . C2W |
L2W; Galileo: C1X,L1X,C5X . L5X; BDS: C2I,
L21.C61.L61,

®2 PPPARZKMSHEE
Table 2 Parameter Configuration for PPP
AR Experiments

S8 fic &
L {24 Y XA B 85 AR 00 i
TRERG GPS/Galileo/BDS
GPS/Galileo/BDS B WL & 5 #L 1L
g 12225 O BEFUAR 132 08 00 516 55 4
BEAR 5029 0.3 m A1 1 mm s 5 i A 28
AL Sy 07 = a® + b°/ sin*E

W

\

LI L 5 AR Y

e sl E[PE (1R
RAER /s 30
Wk EE A/ ) 7
B b 2 CNES 9 I ik 2 L 18 0 22 7 i
OSB 7™ fil CNES 2 I £ 1 FAR 07 4 22 7 i
FEMOHL A b / F L b 2 S
B ML E= it WL i A
T 4iE 3R ¥R 43 {# F Saastamoinen 5% 7
it i 2 A 3R AT 5 90 S RS 1R B L i A i
TI s R )2 B pR A A BR Y pR AL
LB SR AE IR BEHL I L
KLk IE igsld_wwww.atx
R [ o Bootstrapping 2 A KT 95% 5

Ratio f§ A~ /NF 3.0

22 OSBFmE=EFME

S OSB 77 i 19 AT P 2 7 Al 5T i 0 —
AHEFE AR, 46 OSB ™= & nl i e 5 B i oo
BErHE. B 35E 4504 T 5258 1
GPS . Galileo \BDS % 4t T & £k 5 FLAH A2 OSB 7
i B X AT RS B . AT LAE E R s TR Y
FE OSB ™ i 19 °] JH 22 345 100 %6 , X R A2 OSB
PR B AT RN 2 100% . G28,E02,E07.E21
T A OSB ™~ & 19 °] H 4 40%~90% Z
B o CO1~CO5 ¥y b 35Kk i 1k 1 18 (geostationary
earth orbit, GEO) T2 , H# i /= 5 i 5% 22, 7
F BDS GEO TLE M A OSB 7 i 52 4% Tk 2
2 B AR OSB = 50 i Ah i T
B BN C15.C17.C18.C31 LA AL T A Al

RA P CNES AR #24ESC B OSB 7™ i .

B 54 H T CNES 4 fit f§ 2022 4F DOY
291~321 3L 31 KAy 5ZiF OSB 7= fh i el . a] LA
A, P OSB M fE AE % o, JLF R4S, FH AL
OSBEM A 25k 3h . K645 T WUM #2 4t
(i) 2022 4E DOY 291~321 3% 31 K ¥ J5 OSB 7=
i B P B, 05 OSB 7= i TG 8 2 O B 34 J2& A A7
— KW RA - EH. R3IGHTELEHBN
CNES i OSB 7= it i H 7 ) 5 #E 22 (standard
deviation, STD){H , WUM #4925 J5 OSB 7 /i
HT—RHEA—E, BIIFR#EITHEIT. "L
F i, GPS | Galileo . BDS TL & B /4> 41 2 |- 4 1
OSB 7= i i) STD fH 2 M %5 1Y . GPS. Galileo fH
£ OSB i STD I At 0.2 & , L T BDS
Z5090.228 4, Ui B GPS #l Galileo A1 f7 OSB 7=
i AR E M T BDS,

23 HHEREST

B B RUAR A7 OSB 7= i 15 Bk 14 2 T3 22 ity 1l 7
HEIR TR SRR B 2 B B BRI L IR R
Xof ASER B 2 B0 A A ] B 2 Ak B B AL v T
PRAEIR o BRI 2 - B D3 oG 8 B BE A ek
(0 TR AR Sy B B T OR A T AL R o B AR
ESHMpEME, XN EEMER ICEAER
BBCREME B TR RIRZE 2 B RN F
RMWATE, PP LEHERNEHER. &1t
OSB HUIE (O B2 L ] B 22 (800 /NEIGRR 43, BVBSERY)
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