

武汉大学学报(信息科学版) Geomatics and Information Science of Wuhan University ISSN 1671-8860,CN 42-1676/TN

《武汉大学学报(信息科学版)》网络首发论文

题目:复杂环境 GNSS/INS 组合定位异常探测自适应方法作者:王成龙,冯威,黄丁发DOI:10.13203/j.whugis20230290收稿日期:2024-05-07网络首发日期:2024-06-20引用格式:王成龙,冯威,黄丁发.复杂环境 GNSS/INS 组合定位异常探测自适应方法
[J/OL].武汉大学学报(信息科学版).https://doi.org/10.13203/j.whugis20230290

Sentire

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国 学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷 出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出 版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首 发论文视为正式出版。

DOI:10.13203/j.whugis20230290 引用格式:

王成龙, 冯威, 黄丁发. 复杂环境 GNSS/INS 组合定位异常探测自适应方法[J].武汉大学 学报(信息科学版),2024,DOI: 10.13203/j.whugis20230290 (WANG Chenglong, FENG Wei, HUANG Dingfa. Adaptive Method for Outlier Detection of GNSS/INS Positioning in Complex Environments[J].Geomatics and Information Science of Wuhan University,2024,DOI: 10.13203/j.whugis20230290)

复杂环境 GNSS/INS 组合定位异常探测自适应方法

王成龙1 冯威1 黄丁发1

1 西南交通大学地球科学与环境工程学院,四川 成都,611756

摘要:复杂环境下全球导航卫星系统 (global navigation satellite system, GNSS) 信号易受干扰,导致 GNSS/ 惯性导航系统 (inertial navigation system, INS) 组合导航定位异常,准确探测定位异常是组合导航完好性 的重要指标。针对常用的固定阈值探测模式存在误(漏)报率高的问题,构建了基于异常特性和三阈值的 模糊逻辑隶属函数,归一化后进行指数加权平滑,提出了新的检验量和自适应异常探测控制准则。车载 GNSS/INS 组合动态实验结果表明:与传统的探测方法相比,本文方法异常探测的误报率降低了 93%以上, 提高了对交选区域检验量的判定能力,可有效降低误报率;检测时间窗自适应调节、响应速度快、探测成 功率保持在 98%以上,大幅度提升了异常探测的性能,增强了 GNSS/INS 组合导航定位的可靠性。 关键词: GNSS; INS; 组合导航定位;异常探测;模糊逻辑;自适应

Adaptive Method for Outlier Detection of GNSS/INS Positioning in Complex Environments

WANG Chenglong¹ FENG Wei¹ HUANG Dingfa¹

1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract: Objectives: In complex environments, global navigation satellite system (GNSS) signals are susceptible to interference, leading to the presence of outliers in positioning results. Enhancing the performance of GNSS/inertial navigation system (INS) integrated navigation effectively and accurately detecting outliers in positioning results are crucial indicators of system integrity. Methods: To address the issue of high false positive and false negative rates in current single-threshold detection methods, a novel approach involves constructing fuzzy logic membership functions based on outlier characteristics and three thresholds. After normalization and exponential weighted smoothing, a new detection metric is formed, and an adaptive outlier detection control criterion is designed. Results: The results demonstrate the effectiveness of the proposed method. It enhances the determination capability of detection metrics in overlapping areas, effectively reducing false positive rates exceeding 93% compared to traditional methods. Additionally, the method incorporates adaptive adjustment of the detection time window, rapid response speed, and high detection success rate exceeding 98%. Conclusions: This algorithm improves the ability to assess measurements in overlapping regions while incorporating the feature of adaptively adjusting the detection time window. Outliers are almost never missed, and it responds quickly to abnormal conditions after the recovery process, promptly releasing fault warnings. Overall, compared to conventional detection methods, this algorithm significantly improving the efficiency of outlier detection and enhancing the reliability of GNSS/INS integrated navigation positioning.

Key words: GNSS; INS; integrate navigation and positioning; outlier detection; fuzzy logic; adaptively

全球导航卫星系统(global navigation satellite system, GNSS)和惯性导航系统(inertial navigation system, INS)是目前广泛应用的两种导航技术,将其结合可以实现优势互补,能够提升复杂环境中的导航定位精度^[1,2],在车载导航定位领域发挥重要作用。然而,复杂环境下的组

收稿日期: 2024-05-07

项目资助:国家自然科学基金(42171429)。

第一作者:王成龙,博士生,主要从事 GNSS/INS 组合导航定位方面的研究。W2022310535@my.swjtu.edu.cn。通讯作者: 冯威,博士,副教授。wfeng@swjtu.edu.cn。

合导航定位仍面临较大的挑战。GNSS 信号易受遮挡和多路径效应等因素的影响^[3,4],导致定位 结果异常而污染整个组合导航定位精度和降低系统整体性能。因此,组合导航过程中对 GNSS 异常值的及时精确探测与处理对提高系统定位性能至关重要^[5]。

早期的异常探测和诊断方法主要基于硬件冗余法,利用多只同类传感器测量同一系统参数, 以多数表决原则识别异常,具有不依赖系统的数学模型、检测速度快等优点,但会增加导航设备 的体积、功耗和成本^[6]。随着计算机运算能力的不断提升,在硬件冗余方法的基础上提出了分析 冗余方法。分析冗余方法基于系统的数学模型,提供诊断系统的输入和输出之间的解析关系,在 不增加传感器数量和改变导航设备结构的情况下,实现对导航传感器的监测,是目前传感器异常 检测的主要研究手段^[7]。 χ^2 检验作为经典的分析冗余类方法^{[8][9][10]},根据所构造的随机检测量不 同分为状态检验法和残差检验法^{[11][12][13]}。其中残差 χ^2 检验计算量和报警延迟量较小,且对量测 异常比较敏感,因此在组合导航系统的异常检测问题中广泛应用^{[14][15]}。文献[16–18]利用残差检 验法对 GNSS/INS 组合导航定位中的量测异常值进行检验,可以有效地对突变异常进行检测和重 构,极大地提高了滤波器的稳定性和精度。文献[19]利用滤波过程中的观测残差检验量与滤波器 阈值构建观测因子,结合变分贝叶斯估计理论与抗野值滤波方法,设计了改进的组合导航系统自 适应滤波算法。常规的残差 χ^2 检验方法都是通过一个由上分位点决定的阈值来判断系统是否异 常,而上分位点选取过高或过低都会产生误判。文献[20–22]对常规的残差 χ^2 检验量进行优化, 优化后的算法可以提升异常检测成功率,但由于滑动窗口平滑自身的特点,导致存在检测延迟现 象致使误报率增加。

针对上述问题,本文提出了一种 GNSS/INS 定位异常探测的自适应方法。该方法设计了基于 异常值特性的模糊逻辑隶属函数,通过对隶属度加权和指数加权平均的方法对检验量重构,在此 基础上,建立了合理的异常探测准则,最后通过实测数据验证了算法的有效性。

1. GNSS/INS 组合定位模型

GNSS/INS 松组合定位模型通过 INS 的误差模型建立,采用 15 维的状态参数建立系统状态 方程,其状态向量表示如下

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{\varphi} & \boldsymbol{\delta} \boldsymbol{v}^n & \boldsymbol{\delta} \boldsymbol{p}^n & \boldsymbol{\varepsilon}^b & \boldsymbol{\nabla}^b \end{bmatrix}^{\mathrm{T}}$$
(1)

式中, φ 为姿态误差, δv *为速度误差, δp *为位置误差, ε *陀螺常值漂移, ∇ *为加速度计常值 零偏。选取 GNSS 与 INS 输出的速度和位置之差构造系统观测方程,可得 GNSS/INS 组合定位 离散化系统状态空间模型^{[23][24]}

$$\begin{cases} \boldsymbol{X}_{k} = \boldsymbol{\phi}_{k|k-1} \boldsymbol{X}_{k-1} + \boldsymbol{\Gamma}_{k-1} \boldsymbol{W}_{k-1} \\ \boldsymbol{Z}_{k} = \boldsymbol{H}_{k} \boldsymbol{X}_{k} + \boldsymbol{V}_{k} \end{cases}$$
(2)

式中, X_k 和 X_{k-1} 分别为k和k-1时刻的系统状态向量, Z_k 为系统量测向量, $\phi_{k|k-1}$ 为系统状态 一步转移矩阵, Γ_{k-1} 为系统噪声驱动矩阵, H_k 为量测系数矩阵, W_k 为系统动力学模型误差向量, V_k 为量测噪声向量^{[25][26]}。

上述组合定位中所采用的 Kalman 滤波一般均基于白噪声假设,即 W_k 和 V_k 都是零均值的高斯白噪声序列且互不相关,满足

$$E[\boldsymbol{W}_{k}] = 0, E[\boldsymbol{W}_{k}\boldsymbol{W}_{j}^{\mathrm{T}}] = \boldsymbol{Q}_{k}\boldsymbol{\delta}_{kj}$$

$$E[\boldsymbol{V}_{k}] = 0, E[\boldsymbol{V}_{k}\boldsymbol{V}_{j}^{\mathrm{T}}] = \boldsymbol{R}_{k}\boldsymbol{\delta}_{kj}$$

$$E[\boldsymbol{W}_{k}\boldsymbol{V}_{j}^{\mathrm{T}}] = 0$$
(3)

式中, δ_{k_j} 为Kroneker- δ 函数, Q_k 为动力学模型误差的非负定方差矩阵, R_k 为观测噪声的正定协方差矩阵。只有在随机动态系统的结构参数和噪声统计特性参数都准确已知的条件下,Kalman

滤波才能获得状态的最优估计^{[27][28]}。然而,复杂环境下 GNSS 信号易受干扰,定位结果容易产 生异常,观测噪声的分布密度函数表现出明显的拖尾现象,而这和上述假设中的高斯分布存在明 显偏差,导致 Kalman 滤波性能下降^[29]。

2. 基于模糊逻辑的异常探测自适应方法

2.1. 残差 χ^2 检验法

残差 χ^2 检验通过构造多维高斯分布的随机向量来检验其均值与方差是否与假设值相符,从 而判断系统是否发生异常。首先通过 Kalman 滤波的新息来构造检验量,然后再使用阈值函数来 界定异常和干扰^[30]。

对于 GNSS/INS 组合定位卡尔曼滤波器,新息向量表示实际量测值与预测值之间的残差,定 义新息向量为

$$\boldsymbol{\varepsilon}_{k} = \boldsymbol{Z}_{k} - \boldsymbol{H}_{k} \hat{\boldsymbol{X}}_{k/k-1} \tag{4}$$

其协方差矩阵为

$$\boldsymbol{C}_{k} = \boldsymbol{H}_{k} \boldsymbol{P}_{k/k-1} \boldsymbol{H}_{k}^{\mathrm{T}} + \boldsymbol{R}_{k}$$

$$\tag{5}$$

在量测信息没有发生异常的情况下,新息向量可认为是白噪声序列^[31,32],构造检验统计量为
$$T_k = \boldsymbol{s}_k^{\mathrm{T}} \boldsymbol{C}_k^{-1} \boldsymbol{\varepsilon}_k$$
 (6)

 T_k 服从自由度为t的 χ^2 分布,t为量测向量的维度,即 $T_k \sim \chi^2(t)$ 。当量测信息未出现异常时, $Z_k = H_k \hat{X}_{k/k-1}$ 是对 Z_k 的最优预测估计。当量测信息出现异常时,新息 ε_k 产生较大偏差,此时 T_k 不再服从上述分布。假定非中心化参数为 σ ,则零假设和备选假设的命题为

$$H_0: T_k \sim \chi^2(t,0)$$

$$H_1: T_k \sim \chi^2(t,\sigma)$$
(7)

取显著性水平为α,则有

$$P\left\{\chi^{2}\left(t\right) > TD\right\} = \alpha \tag{8}$$

式中, TD 为异常发生的边界条件, 决定了异常探测的性能, 由上分位点和显著性水平得到。设定异常判定的准则为,

$$\begin{bmatrix} T_k \leq TD & 无异常 \\ T_k > TD & 有异常 \end{bmatrix}$$
 (9)

在量测信息正常情况下, $T_k > TD$ 的概率为α,则在1-α的置信度下可认为系统无异常。在 GNSS/INS 松组合定位中,量测向量的维度一般为 6。当显著性水平取 0.5%时, $P\{\chi^2(6)>18.55\}=0.5\%$ 。可见,在量测信息正常情况下, $T_k > 18.55$ 的概率为 0.5%,则在 99.5% 的置信度下认为系统无异常。

为了避免残差 χ²检验在检测过程中产生误判,常采用滑动窗口平滑对检验量进行处理。这 种方式虽然可提高异常探测的性能,但需存储较多的历史检验量,计算成本高且在异常结束后存 在检测时延,造成了误报率的上升,从而使滤波精度下降。

2.2. 隶属度指数加权自适应

传统的残差 χ^2 检验方法是通过比较检验量与固定单阈值来判断组合定位是否出现异常,当 检测量大于阈值时判定系统异常,否则,判定无异常。若检测量落在其无异常时的概率密度曲线 与有异常时的概率密度曲线的交迭部分,则容易犯弃真或纳伪错误,导致异常探测发生误报和漏 报。如图 1 所示,犯弃真错误的概率为 α ,即当 H_0 为真但统计量落入 α 的区间内被判断拒绝 H_0 ;当 H_1 为真统计量落入 H_0 的接受域 β 区间内,犯纳伪错误;且当检测量越靠近交迭区域的 中心部分(TD附近)时的犯错误概率越大,此时单一阈值将造成误报率与漏报率之间的矛盾。

Fig.1 Relationship Between two Kinds of Detection Error and Threshold 单一阈值对于交迭中心区域检验量的判断产生干扰,因此选择三个阈值将检验量分成无异 常、可能异常和有异常三种类型,利用三阈值构造检验量的模糊逻辑隶属函数,分别用字母 H、 M 和 D 表示。通过设计的模糊逻辑隶属函数将检验量转换成相应的隶属度(degree of membership, DOM),设计的隶属度函数表达为

式中TD1、TD2、TD3为三个阈值。TD1小于常用的残差 χ^2 检验中设定的阈值,当 $T_k < TD1$ 时, 检验量判定为无异常。当 $T_k = TD2$ 时,组合定位结果介于有异常与无异常之间,即赋予该阈值有 异常的可能性为 0.5,TD2设置为常规残差 χ^2 检验中由误报率确定的阈值。TD3确定检验量发 生异常的阈值,即当 $T_k > TD3$ 时,判定检验量异常。三种隶属度函数对应的函数曲线如图 2 所 示。相比于传统检验方法,本方法将异常判断的门限从一个单阈值扩展为三个阈值,可提高对交 迭区域检验量的判断能力,减少两类错误的发生,增强组合定位异常判定的适用性。

$$\mu_k = a_H DOM_{H,k}(T_k) + a_M DOM_{M,k}(T_k) + a_D DOM_{D,k}(T_k)$$
(11)

式中, a 为三种隶属度的加权系数,通过合理选择a,将 T_k 映射到(0,1]区间内实现归一化处理。将大于等于TD2的检验量映射到[0.5,1],满足当 $T_k = TD2$ 即检验量有无异常的可能性为 0.5时, $\mu_k = 0.5$ 。当 $T_k > TD3$ 即检验量有异常时, $\mu_k = 1$ 。对 μ_k 进行指数加权平均:

$$D_k = D_{k-1} / 2 + \mu_k \qquad D_0 = 0 \tag{12}$$

式中, D_k 为重构的异常检验量,介于区间[0, 2]。采用指数加权平均,以提高时间序列 μ_k 的信 噪比,并实现检测时间窗口的自适应调节。

当 T_k 连续若干次大于TD2时,一定能使 $D_k > 1$,且 T_k 越大, D_k 达到1的时间越短。当 T_k 连续两次大于TD3时,必有 $D_k > 1$,故设 $D_k > 1$ 为判定异常发生和系统报警条件。当启动异常警戒后若满足 $T_k < TD2$ 且 $D_k < 1$ 时,解除异常警戒,同时将 D_k 清零,为下一次启动异常警戒过程做准备。

根据上述论证,制定以下探测准则:

- 1) 当 $D_k < 1$ 时,系统正常工作;
- 2) 当 $D_k > 1$ 时,系统出现异常并报警;
- 3) 当系统报警后, 若 $T_k < TD2$ 且 $D_k < 1$ 时, 异常解除, D_k 清零。

2.3. 自适应性能分析

本文方法根据异常值大小自适应调整检测时间窗长短,以提高异常探测的灵敏性,实现对交 迭区域检验量更合理的判定。若 T_k 落在交迭区域的中心,有无异常的可能性较接近时,自动拉长 检测时间窗,增加用于异常探测的信息,从而提高探测的正确率;反之,当 T_k 落在交迭区域边沿时,自动缩短检测时间窗,从而降低探测延迟、减少累积误差。为分析所提出的探测方法的自适 应性能,仿真了 1)大于*TD*2 的序列;2)启动异常警戒过程后小于*TD*2 的序列;3)*TD*2 附近的 序列。设置的三个阈值分别为:*TD*1=14.45,对应的误报率为 0.025;*TD*2=18.55,对应的误报 率为 0.005;*TD*3=10*TD*2,加权系数取 $a_H = TD1/TD3$, $a_M = 0.5$, $a_D = 1$ 。 D_k 序列的变化情况 如图 3 所示。

图 3 不同检测量的变化规律对比

Fig.3 Comparison of the Change Rules of Different Detection Quantities

对大于*TD2*的序列, T_k 越大时, D_k 值上升到大于1所需时间越少,即异常发生时缩短了对 异常的反应时间,可有效地降低异常探测的漏报率,如图 3a 所示。对启动异常警戒过程后小于 *TD2*的序列,当 T_k 越小时, D_k 值下降到小于1所需时间越短, D_k 更快地清零,表明当异常结束 后自适应算法可迅速解除异常告警,避免出现误报现象,如图 3b 所示。对于在*TD2* 附近的序列, 无论是大于*TD2* 时 D_k 上升到大于1,还是小于*TD2* 时 D_k 下降到小于1,都会增加探测的时间窗 口,提高了对交迭中心区域检验量异常的探测能力,如图 3c 所示。

3. 车载实验分析

为了进一步验证算法的性能和适用性,利用导航级 IMU 和 MEMS IMU 的两组实验数据,分别采用传统异常探测算法和本文提出的自适应算法对组合定位进行异常检测。

3.1. 导航级 IMU 实验

导航级车载 GNSS/INS 组合定位实验过程中, GNSS 和 IMU 组件的性能参数如表 1 所示。

Table.1 Vehicle Sensor	Parameters	
参数项	参数值	
陀螺仪零偏((°)/h)	0.01	
陀螺仪随机游走((°)/h/√Hz)	0.0015	
加速度计零偏(µg)	50	
加速度计随机游走(µg/√Hz)	10	
GNSS 定位误差(m)	0.04	

表1 导航级车载传感器参数 Table.1 Vehicle Sensor Parameter

测试地点位于西南交通大学犀浦校区校园内, IMU 数据采样率为 200 Hz,GNSS 数据采样率 为 1 Hz,数据总时长 1 160s,实验平台和运动轨迹如图 4 所示。

图 4 试验平台与实验轨迹 Fig.4 Experiment Platform and Test Trajectory

实验过程中由于受到高大建筑物等的遮挡,卫星信号在 371s~391s(图 4 中 A 区域)和 897s~940s(图 4 中 D 区域)时间段内发生异常,定位误差分别为 0.1m 和 0.35m。此外。为了验证算法对不同大小异常情况的检测性能,手动设置了两个卫星信号异常区域,分别在 500s~521s(图 4 中 B 区域)和 716s~748s(图 4 中 C 区域)时间段内给 GNSS 加入 0.2m 和 0.3m 的定位误差,实验过程中,GNSS 定位误差如图 5 所示。

分别采用本文自适应算法和传统移动窗口平滑方法对异常进行检测跟踪,移动窗口平滑算 法中窗口长度设置为4,图6、7是两种算法异常探测函数曲线及其放大图。

Fig.6 Fault Detection Function Curves of traditional Algorithm

Fig.7 Fault Detection Function Curves of adaptive Algorithm

由图 6 可知, 传统算法对 A 区域的异常响应速度较慢, 开始时在阈值附近跳动, 无法准确 探测出异常, 经过 3s 后才对异常响应。随着异常值的增大响应速度也变快, 对 B、C、D 区域的 异常在发生的当前时刻可迅速做出响应, 且后续的所有异常均可被探测出。传统算法在异常恢复 正常后存在探测延迟现象, 分别需要 7s、15s、20s 和 22s 才提示异常结束, 发生了严重的误报。 由图 7 可知, 自适应算法对每个区域的异常均可快速响应, 在异常发生的当前时刻及时提供告警 信息, 且在异常恢复正常时刻快速解除预警, 只需 2s、2s、0s 和 0s 即可提示异常结束。

通过探测成功点数、漏报点数和误报点数 3 个指标来评价算法性能,对每个异常时段两种 算法检测指标进行统计分析,如表 2 所示。

表 2 两种算法异常检测情况对比

Ta	able.2 Compa	rison of Fau	It Detection	Indexes Be	tween the Ty	wo Algorith	ms
昆带	连续导	///)	传统算法		É	1适应算法	;
	<i>定误开</i> 常历元	成功	漏报	误报	成功	漏报	误报
	111/11/12	点数	点数	点数	点数	点数	点数
А	21	19	2	7	21	0	2
В	22	22	0	15	22	0	2
C	23	23	0	22	23	0	0
D	44	44	0	20	44	0	0
总计	110	108	2	64	110	0	4

根据表 2 可以得出:两种算法可有效探测定位异常,传统算法和自适应算法探测的成功率分别为 98.2%和 100%。传统算法对小于 5 倍中误差的异常探测出现漏报,而自适应算法对异常的 探测基本不存在漏报现象。传统算法在异常恢复后存在严重的误报现象,而自适应算法只在小于 5 倍中误差异常处有轻微的误报情况发生,相较于传统算法总体误报率减少 93.8%。两种算法的 误报历元对比如图 8 所示。

3.2. MEMS IMU 实验

为了验证算法的普适性,采用车载 MEMS IMU 数据进行实验测试,数据来源于西北工业大学自动化学院惯性技术教研室 PSINS 开源网站(http://www.psins.org.cn/dhsj)。车载数据采集所使用的 GNSS 和 IMU 组件的性能参数如表 3 所示,实验数据总时长 1760s。

Table.3 Ve	hicle Sensor Parameters
参数项	参数值
IMU 采样率(Hz)	100
陀螺仪零偏((°)/h)	500
加速度计零偏(µg)	5000
GNSS 采样率(Hz)	
GNSS 定位误差(m)	0.3

表3 车载传感器参数

为了验证算法的探测性能,在测试中手动设置了两种不同时长类型的异常,其中在第 200s~920s 内设置了 10s~20s 不等的 12 段短时异常,异常总时长为 180s,在 1468s~1568s 内设置 了一段 100s 的长时异常,如图 9 所示。

分别采用传统算法和自适应算法对实验数据进行量测异常检测跟踪,两种算法的异常探测 函数曲线如图 10、图 11 所示。

Fig.11 Fault Detection Function Curves of adaptive Algorithm 从上图可以看出,两种算法均可有效探测两种类型的异常,在异常发生时可快速响应,但是 传统算法在异常恢复正常后存在探测延迟。对每个异常时段两种算法检测指标进行统计分析,统 计结果如表 4 所示。

表 4 两种算法异常检测情况对比

Table.4 C	ompar	ison of	Fault E	Detection	Indexes Between	the Two Algorithms	

导带	豆 一	$\setminus \setminus$	传统算法		É	适应算法	
开巾 米刑	开市	成功	漏报	误报	成功	漏报	误报
天空	1176	点数	点数	点数	点数	点数	点数
短时连续异常	180	175	5	174	177	3	12
短时连续异常 长时异常	180 200	175 194	5 6	174 12	177 196	3 4	12 1

表 4 中的统计结果可知: 传统算法和自适应算法均可有效地探测出 GNSS 的定位异常,总体探测成功率分别为 97.1%和 98.2%,漏报率分别为 2.9%和 1.8%。传统算法存在严重的误报,误报率高达 10.6%,而自适应算法的误报率仅为 0.7%,误报率降低了 93.4%。上述实验结果与导航级 IMU 实验结论相似,表明自适应算法对不同时长的异常均可精确探测,同时适用于不同精度 IMU 的组合导航数据。

4 结论

本文针对复杂环境下 GNSS/INS 组合定位异常探测,提出了一种组合导航异常探测的自适应 方法。在残差 χ²检验法基础上,利用模糊逻辑算法和指数加权平均算法构造的新检验量和制定 的异常探测控制准则,提高对交迭区域检验量的判断性能,同时具备自适应调整检测时间窗的能 力。实验结果表明,该算法对 GNSS 定位异常可实现有效的探测,探测的成功率保持在 98%以 上,异常历元漏报现象极低,提高了异常探测的效率。此外,本文方法在异常恢复后可迅速识别, 相比于常规检测方法总体误报率减少了 93%以上,极大提升了异常探测性能。

参考文献

[1] NIU X, DAI Y, LIU T. Feature-Based GNSS Positioning Error Consistency Optimization for GNSS/INS Integrated System[J]. *GPS Solutions*, 2023, 27(2): 89.

[2] LIU Y, FAN X, LV C. An Innovative Information Fusion Method with Adaptive Kalman Filter for Integrated INS/GPS Navigation of Autonomous Vehicles[J]. *Mechanical Systems and Signal Processing*, 2018, 100: 605-616.

[3] Huang Dingfa. Principles of satellite navigation and positioning[M].WuHan University Press,2015. (黄丁发.卫星导航定位原理[M]. 武汉大学出版社, 2015.)

[4] Tao Xianlu, Zhang Xiaohong, Zhu Feng, et al. An Outlier Detection Method of GNSS/SINS Integrated Navigation Based on Accelerometer Bias Stability[J]. *Geomatics and Information Science of Wuhan University*, 2018, 43(7): 1078-1084. (陶贤露, 张小红, 朱锋, 等.一种基于加表零偏稳定性的 GNSS/SINS 组合导航异常探测方法[J]. 武汉大学学报·信息科学版), 2018, 43(7): 1078-1084.)

[5] SUN R, WANG J, CHENG Q. A New IMU-Aided Multiple GNSS Fault Detection and Exclusion Algorithm for Integrated Navigation in Urban Environments[J]. *GPS Solutions*, 2021, 25(4): 147.

[6] AIKELE M, BAUER K, FICKER W. Resonant Accelerometer with Self-Test[J]. Sensors and Actuators A: Physical, 2001, 92(1): 161-167.

[7] YI-TING L, XIAO-SU X, XI-XIANG L. A Fast Gradual Fault Detection Method for Underwater Integrated Navigation Systems[J]. *The Journal of Navigation*, 2016, 69(1): 93-112.

[8] JOERGER M, PERVAN B. Kalman Filter-Based Integrity Monitoring Against Sensor Faults[J]. *Journal of Guidance, Control, and Dynamics*, 2013. 36(2):349-361.

[9] EL-MOWAFY A. On Detection of Observation Faults in the Observation and Position Domains for Positioning of Intelligent Transport Systems[J]. *Journal of Geodesy*, 2019, 93(10): 2109-2122.

[10] Zhang Hao, Xiao Yong, Yang Chaoxu. Integrated Navigation System Based on Fault Detection Using Double State Chi-square Test[J]. *Acta eronautica et Astronautica Sinica*, 2020, 41(S2): 53-60. (张 浩,肖勇,杨朝旭.基于双状态卡方异常检测的组合导航系统[J]. 航空学报, 2020, 41(S2): 53-60.)

[11] Liu Jianye, Li Dan, Xiong Zhi. Research on an Improved Residual Chi-square Fault Detection Method for Federated Unscented Kalman Filter[J]. *Chinese Journal of Scientific Instrument*, 2009, 30(12): 2568-2573. (刘建业,李丹,熊智.一种改进的残差 χ² 检验方法在联邦 UKF 滤波器中的应用 [J]. 仪器仪表学报, 2009, 30(12): 2568-2573.)

[12] Weng Jun, Cheng Yan, Qin Yongyuan. Application of Vehicle Constraints in SINS/OD System's Fault Detection[J]. *Journal of Chinese Inertial Technology*, 2013, 21(3): 406-410. (翁浚,成研,秦永元. 车辆运动约束在 SINS/OD 系统异常检测中的应用[J]. 中国惯性技术学报, 2013, 21(3): 406-410.)

[13] DUTTA A, MCKAY M, KOPSAFTOPOULOS F. Statistical Residual-Based Time Series Methods for Multicopter Fault Detection and Identification[J]. *Aerospace Science and Technology*, 2021, 112: 106649.

[14] Zhang Tongshuang, Chen Feng, Li Xiaoyong. Fault-Tolerance Filtering of TT&C Ship's INS/GPS/DVL Integrated Navigation[J]. *Journal of Chinese Inertial Technology*, 2006(5): 21-23. (张 同双,陈锋,李晓勇.航天测量船 INS / GPS / DVL 组合导航系统容错滤波方法[J]. 中国惯性技术学报, 2006(5): 21-23.)

[15] Han Binzi, Hu Baiqing. Fault Diagnosis of Integrated Navigation System Based on Time Series Modeling[J]. *Journal of Harbin Engineering University*, 2018, 39(11): 1843-1847. (韩斌子,胡柏青.基于时间序列建模的组合导航系统异常诊断[J].哈尔滨工程大学学报, 2018, 39(11): 1843-1847.)

[16] Miao Yuewang, Zhou Wei, Tian Liang, et al. Extended Robust Kalman Filter Based on Innovation Chi-Square Test Algorithm and Its Application[J]. *Geomatics and Information Science of Wuhan University*, 2016, 41(2): 269-273. (苗岳旺,周巍,田亮,等. 基于新息 χ²检测的扩展抗差卡尔曼滤 波及其应用[J]. 武汉大学学报·信息科学版, 2016, 41(2): 269-273.)

[17] Zhou Xianlin, Zhang Huijun, He Tao. Research on Adaptive Kalman Filter Algorithm for GPS/INS Loosely Coupled Integrated Navigation[J]. *Journal of Time and Frequency*, 2020, 43(3): 222-230. (周 先林,张慧君,和涛. GPS/INS 松耦合组合导航的自适应卡尔曼滤波算法研究[J]. 时间频率学报, 2020, 43(3): 222-230.)

[18] Zhang Limin, Zhang Xinghui, Chen Zengqiang. Improvement of Adaptive Kalman Filtering Algorithm and its Application in SINS/GPS Integrated Navigation[J]. *Journal of Southeast University* (*Natural Science Edition*), 2013, 43(S1): 89-92. (张利民,张兴会,陈增强.自适应 Kalman 滤波的改进 及其在 SINS/GPS 组合导航中的应用[J]. 东南大学学报·自然科学版, 2013, 43(S1): 89-92.)

[19] Lin Xueyuan, Liu Lili, Dong Yunyun. Improved Adaptive Filtering Algorithm for GNSS/SINS Integrated Navigation System[J]. *Geomatics and Information Science of Wuhan University*, 2023, 48(1): 127-134. (林雪原,刘丽丽,董云云.改进的 GNSS/SINS 组合导航系统自适应滤波算法[J]. 武汉大学 学报·信息科学版, 2023, 48(1): 127-134.)

[20] Zeng Qinghua, Zhao Tianyu, Zhao Bin. Adaptive Kalman Filter Algorithm Based on Exponential Attenuating Factor for Integrated Navigation System[J]. *Journal of Chinese Inertial Technology*, 2021, 29(3): 307-313. (曾庆化,赵天钰,赵宾.基于指数渐消遗忘因子的组合导航自适应滤波算法[J]. 中国 惯性技术学报, 2021, 29(3): 307-313.)

[21] Jin Kaidi, Chai Hongzhou, Su Chuhan. Variational Bayesian Adaptive Filter Based on Variable Attenuating Factor[J]. *Journal of Beijing University of Aeronautics and Astronautics*, 1-16. (靳凯迪,柴 洪洲,宿楚涵.基于可变遗忘因子的变分贝叶斯自适应滤波算法[J]. 北京航空航天大学学报: 1-16.) [22] Jiang Rui ,Li Jun, Xu Youyun. Fault Tolerant GPS-AOA-SINS Integrated Navigation Algorithm Based on Federated Kalman Filter[J]. *Journal on Communications*, 2022, 43(8): 78-89. (蒋锐,李俊, 徐 友云等. 基于联邦卡尔曼滤波器的容错 GPS-AOA-SINS 组合导航算法[J]. 通信学报, 2022, 43(8): 78-89.)

[23] Han Houzeng, Tan Xinglong, Wang Jian. SVR Aided Adaptive Robust Filtering Algorithm for GPS/INS Integrated Navigation[J]. *Acta Geodaetica et Cartographica Sinica*, 2014, 43(6): 590. (韩厚 增,谭兴龙,王坚.支持向量回归辅助的 GPS/INS 组合导航抗差自适应算法[J]. 测绘学报, 2014, 43(6): 590.)

[24] LI Yanjie, YANG Yuanxi, HE Haibo. Effects Analysis of Constraints on GNSS/INS Integrated Navigation[J]. *Geomatics and Information Science of Wuhan University*, 2017, 42(9): 1249-1255. (李 彦杰, 杨元喜, 何海波. 附加约束条件对 GNSS/INS 组合导航结果的影响分析[J]. 武汉大学学报· 信息科学版, 2017, 42(9): 1249-1255.)

[25] TEUNISSEN P J G, KHODABANDEH A, PSYCHAS D. A Generalized Kalman Filter with its Precision in Recursive Form when the Stochastic Model is Misspecified[J]. *Journal of Geodesy*, 2021, 95(9): 1-12.

[26] DING W, WANG J, RIZOS C. Improving Adaptive Kalman Estimation in GPS/INS Integration[J]. *The Journal of Navigation*, 2007, 60(3): 517-529.

[27] Gao Weiguang, Chen Gucang. Integrated GNSS/INS Navigation Algorithms Combining Adaptive Filter with Neural Network[J]. *Geomatics and Information Science of Wuhan University*, 2014, 39(11): 1323-1328. (高为广,陈谷仓. 结合自适应滤波和神经网络的 GNSS/INS 抗差组合导航算法[J]. 武

汉大学学报·信息科学版, 2014, 39(11): 1323-1328.)

[28] CHANG G. Kalman filter with both adaptivity and robustness[J]. *Journal of Process Control*, 2014, 24: 81-87.

[29] HUBER P J, RONCHETTI E M. Robust Statistics, Second Edition[M]. Robust Statistics, Second Edition, 2009.

[30] ZHANG C, ZHAO X, PANG C. Improved Fault Detection Method Based on Robust Estimation and Sliding Window Test for INS/GNSS Integration[J]. *The Journal of Navigation*, 2020, 73(4): 776-796.

[31] Liu Tao, XU Aigong, Sui Xin, et al. An Improved Robust Kalman Filtering Method Based on

Innovation and Its Application in UWB Indoor Navigation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 233-239. (刘韬, 徐爱功, 隋心, 等. 新息向量的抗差 Kalman 滤波 方法及其在 UWB 室内导航中的应用[J]. 武汉大学学报·信息科学版, 2019, 44(2): 233-239.) [32] YANG Z, LI Z, LIU Z, et al. Improved robust and adaptive filter based on non-holonomic constraints for RTK/INS integrated navigation[J]. Measurement Science and Technology, 2021, 32(10): 105110.

网络首发:

标题:复杂环境 GNSS/INS 组合定位异常探测自适应方法 作者:王成龙,冯威,黄丁发 收稿日期:2024-05-07 DOI:10.13203/j.whugis20230290

网络首发文章内容和格式与正式出版会有细微差别,请以正式出版文件为准!

您感兴趣的其他相关论文: BDS-2/BDS-3 融合三频精密单点定位模型及偏差特性分析 朱少林,岳东杰,何丽娜,陈健,刘胜男 武汉大学学报(信息科学版),2023,48(12):2049-2059. http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210273

BDS-3/GNSS 非组合精密单点定位

曹新运, 沈飞, 李建成, 张守建 武汉大学学报(信息科学版), 2023, 48(1): 92-100. http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210198

INS 辅助的实时动态 GNSS 单频周跳探测

王凌轩, 甘雨, 隋立芬, 田源, 刘乾坤 武汉大学学报(信息科学版), 2019, 44(3): 364-370. http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20160214