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Abstract: Objectives: High—precision positioning and navigation services play a crucial role in emerging
fields such as mobile robots, drones, and autonomous driving. Compared with visual-inertial system algo-
rithms, visual-inertial-LiDAR fusion algorithms can utilize the spatial structure and texture information of
the environment to achieve more robust pose estimation results. However, they still suffer {from error accu-
mulation problems in large—scale scenes. Therefore, we propose a global navigation satellite system
(GNSS) precise point positioning (PPP)/vision/inertial/LiDAR tightly—coupled fusion algorithm (GVIL).
Methods: First, the algorithm initially performs a joint initialization of four sensors, which results in the
unification of the spatial reference frames of the different sensors. Second, the original observations from vi-
sion, inertial, and LiDAR are combined with the dual-frequency ionosphere—free combination of GNSS
pseudo range and phase observations to generate error factors. Finally, our algorithm achieves global pose
estimation by using factor graph optimization based on keyframe strategy and sliding windows. Results:

The vehicle-borne experiment results show that even under GNSS—constrained observation conditions, the
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proposed four—sensor tightly—coupled algorithm can improve the position estimation accuracy by more than

84% and the attitude estimation accuracy by more than 66% compared with the VIL combination algo-

rithm.Conclusions: It has been demonstrated that the GVIL algorithm can significantly enhance the accura-

cy, continuity, and reliability of pose estimation in complex environments by combining the raw observa-

tion data from four types of sensors, achieving continuous navigation.

Key words: GNSS; graph optimization; simultaneous localization and mapping (SLAM); sensor fusion
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Fig. 3 Integrated Navigation Data Acquisition Platform
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Tab. 1 Performance Parameters of IMU

R P BB A
MURE 8 i R
[T /mg R /(:1':2) '
StarNeto 0.3 100 0.01
AIDS 8 1500 0.34 0.037

.

Sk DR IE SR B B 14 B ] ) 25 AR SR T LA
GNSS 1y b ik v 5 5 Sy JE o 0 Bsf 18] [8) 25 7 58,
GNSS # U HLiE 3 GNSS K&k Uk L5 5 78
5 GPS WA X555, LA 1 Hz B85 5 1) 4 4y R0 Bk
WA 5B AS [ A% S A% I () 2 o 31 GPS I %1 .
P25 (A 20 b DU PE 3 28 0 Dt o0 SRy Dt At
SEARM AR BR 2R LR T GNSS KR4 5 IMU (14 25 1] )¢
Z 0] DL 3 0 B GNSS K2k e A T IMU il
G By A7 B CFF R (ED 88 s SUE A AL S
IMU [a] 9 25 i) 5& & 0] LL R ) Kalibr T 24 %t
MALE IMU 178G bR B R MO TR B S
IMU [i] () 25 ] & & 7] LA R Autoware T H 47
S R OGRS A HLE 55 ) 56 R R &
IMU 45 R T

P20 G 2 S 0 B Ol B A I T 3 s, L S
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HLIH T 55 A7 TE AR ORI ST 45 45 F A R AE | X g
FEAEAT T AR L A0 75 3K 19 R AE VT AL, {0 23 XF
GNSS{E &/ A HI T, — L AL
Y I A8 Ak Lok B RO S D0, 43 B B AR AE N
FEHEYIRE T

i~

4 SEE-01 42 4R SL IR Bl 5 MRl 37 5%
Fig.4 Trajectory and Typical Scene of Experiment—-01 Vehicle Experiment
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Fig. 5 Trajectory and Typical Scene of Experiment-02 Vehicle Experiment
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Tab. 2 Average Number of Satellites in
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Fig. 8 4 Systems PPP Results of Experiment-01 and Experiment-02
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R3 ARG PPPRREL R RMSE/m
Tab.3 RMSE of 4 Systems PPP Results/m

5 RMSE
B v 5 .

N U YA
S —01 1.820 2.067 5.587 6.229
S8 -02 1.148 1.219 3.793 4.096

TSR R A RO AR SCR T SCHR 8]
B 1 1 S H VIO B3k 5 Scmk [12] B $2 1
VIL 53k WA SCr SE 3 GNSS a8 5Pk 4
& B 1 (GNSS-visual-inertial odometry, GVIO) 5
GVIL B AR 4B o SEg 25 R Aan ke 9 &1 10
HFRA4FSTR,TLEH,E VIO S VIL % H
X 8 LA A SR Al L, 51 A GNSS I AT DA 3
Y VIO 5 VILBEfE S Rl 8 5 848 Ea]
WM B IE BTk 22 1T A RGN B A
PERE . TR B AG T B, -01 1 GVIOE E N,
U 3475 10 - RMSE # # F VIO 4r 51 #2 7+ T
94.8% .94% 5 84.2% ; GVILTEE N U 34 )7 i1
- RMSE M1 % F VIL 43 3142 F+ T 85.1% .90.7 %
527.6%. 925-02% GVIOFE E N, U 34~ J5 [A]
L RMSE M & F VIO 43 il T+ T 94.9% .95% 5
80.3% ; GVIL #£ E N, U 34~ 1] |- RMSE #1%;
T VIL 51827+ 7 96.5% .94.4% 5 84.4% . 7
AT L, LK -01 H GVIO 1 i 17 1 A 3
RMSE 1% T VIO £ 7 1T 66.3% , GVIL #J fiit 7]
ffti RMSE M T VIL £ FF 17 55.7% ; 52 8-02
T GVIO (L 1A £ A 3+ RMSE M1 48 F VIO # 7+
T 87.2% , GVIL [ i [ ffi flk i+ RMSE # # T
VIL#EF T 91.8%
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W O TR A LI B i AT DL R R AR A
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fliHF RMSE 20 42 T+ 7 42.4% .67.7% , i 1) £A 1
it RMSE #& F+ T 32.8% ; 3£ 55 -02 f , GVIL A
F GVIO # E N U 3477 [ I & A i} RMSE
AT T 65.1% .34 % 5 28.9% , it ) 1 Ak 1T
RMSE 7+ 7T 62.2%
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Fig. 9 Positioning and Attitude Accuracy of 4
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Algorithms in Experiment-01
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Fig. 10 Positioning and Attitude Accuracy of 4
Algorithms in Experiment-02

R4 FLW-01 4 FE K E G E LN E RMSE
Tab.4  Positioning and Attitude RMSE of 4 Algorithms

in Experiment-01

RMSE
Hik =YL AL/
E/m N/m U/m .

H/m )
VIO 14.09 10.79 1.46 17.82 1.72
VIL 2.82 2.26 0.76 3.69 0.88
GVIO 0.73 0.65 0.23 1.01 0.58
GVIL 0.42 0.21 0.55 0.72 0.39

TS e A P R A 4 B AR RS R AT R A
AT, ST AR I AR T B9 GNSS 42 )R
AN AE B 5 VIL A X E A7 A5 S A Rl o AR 3T
A 2 8L B Bk PR R b A7 Ik, LI 25 R R
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Tab.5 Positioning and Attitude RMSE of 4 Algorithms

in Experiment-02

RMSE
ER7N =YL AL/
E/m N/m U/m )

H/m )
VIO 16.85 10.56 1.93 19.98 6.40
VIL 8.51 6.30 1.73 10.73 3.80
GVIO 0.86 0.53 0.38 1.08 0.82
GVIL 0.3 0.35 0.27 0.54 0.31

W1, B 7R GNSS 52 BR A WL 2% 74 T, A SO 4
H RS DU B 2 R B AT AT R B T ARk A
FE5 0T R ARER T VIL 44 5k, HA & Al it
R AT LB T 8406 DL b S35 Ak TR B T L T
66% LA I,
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