

武汉大学学报(信息科学版)

Geomatics and Information Science of Wuhan University ISSN 1671-8860,CN 42-1676/TN

《武汉大学学报(信息科学版)》网络首发论文

题目: 临界滚动球半径优化的非航海 TIN-DDM 自动综合算法

作者: 董箭,季宏超,刘国辉,唐露露,陈阳

DOI: 10.13203/j.whugis20220719

收稿日期: 2024-03-09 网络首发日期: 2024-03-28

引用格式: 董箭,季宏超,刘国辉,唐露露,陈阳.临界滚动球半径优化的非航海 TIN-DDM

自动综合算法[J/OL]. 武汉大学学报(信息科学版).

https://doi.org/10.13203/j.whugis20220719

网络首发: 在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。

出版确认: 纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出版广电总局批准的网络连续型出版物(ISSN 2096-4188,CN 11-6037/Z),所以签约期刊的网络版上网络首发论文视为正式出版。

网络首发时间:2024-03-28 08:37:13

网络首发地址:https://link.cnki.net/urlid/42.1676.TN.20240326.1834.001

DOI:10.13203/j.whugis20220719

引用格式:

董箭,季宏超,刘国辉,等. 临界滚动球半径优化的非航海 TIN-DDM 自动综合算法[J].武汉大学学报 (信息科学版),2024,DOI: 10.13203/j.whugis20220719 (DONG Jian, JI Hongchao, LIU Guohui, et al. Nonnavigational TIN-DDM Automatic Generalization Algorithm for Optimizing Critical Rolling Ball Radius[J].Geomatics and Information Science of Wuhan University,2024,DOI: 10.13203/j.whugis20220719)

临界滚动球半径优化的非航海 TIN-DDM 自动综合算法

董 箭 1 季宏超 2 刘国辉 2 唐露露 1 陈 阳 2 1. 海军大连舰艇学院军事海洋与测绘系,辽宁 大连,116018

2.海图信息中心, 天津, 300450

摘要:为有效改善当前非航海 TIN-DDM 综合算法在海底形态维护方面的运算效果,同时能够提升综合算法在工程应用中的计算效率,本文提出一种临界滚动球半径优化的非航海 TIN-DDM 自动综合算法。该算法通过深入分析临界滚动球半径的物理意义,阐明了临界滚动球与 TIN-DDM 采样点法向量的关联性,在精确求取各采样点法向量的基础上,根据采样点空间位置与临界滚动球半径的数值分析,构建了正负向临界滚动球半径计算流程,获取了更加精确的临界滚动球半径值,并将该值直接应用于现有的综合算法中。通过实验表明:相比于对比算法,本文算法的综合结果在 TIN-DDM 的形态维护与地形精度两方面均得到了一定程度上提升,且算法运行速率也有了相对的提高。

关键词: 临界滚动球半径; 非航海 TIN-DDM; 法向量; 计算流程; 自动综合

Non-navigational TIN-DDM Automatic Generalization Algorithm for Optimizing Critical Rolling Ball Radius

DONG Jian¹ JI Hongchao² LIU Guohui² TANG Lulu¹ CHEN Yang²

1 Department of Military Oceanography and Hydrography & Cartography, Dalian Naval Academy, Dalian 116018, China

2 Chart Information Center, Tianjin 300450, China

Abstract: To effectively improve the computational performance of the current non-navigational TIN-DDM automatic generalization algorithm in seabed topographic forms maintenance, and enhance the computational efficiency in engineering applications, this paper proposes a non-navigational TIN-DDM automatic generalization algorithm for critical rolling ball radius optimization. This algorithm deeply analyze the physical meaning of the critical rolling ball radius, clarify the correlation between the critical rolling ball and the TIN-DDM sampling point normal vector, based on the accurate calculation of the normal vector of each sampling point, the numerical analysis of the spatial position of the sampling point and the critical rolling ball radius, a calculation process for the positive and negative critical rolling ball radius is constructed, and a more accurate critical rolling ball radius value is obtained by directly applying this value to existing generalization algorithms. Experiments show that compared with the contrast algorithm, the comprehensive results of the algorithm in this paper have been improved to a certain extent in both the topographic forms maintenance and terrain accuracy of TIN-DDM, and the algorithm running rate has also been relatively improved.

Key words: critical rolling ball radius; non-navigational TIN-DDM; normal vector; calculation process; automatic generalization

数字水深模型(digital depth model,DDM)是利用有限、离散的水深点实现对海底地形表面高低起伏形态的数字化表达,根据水深点数据组织方式的不同,分为规则格网 DDM(GRID-DDM)和不规则三角网 DDM(TIN-DDM)^[1-6]。区别于 GRID-DDM,在 TIN-DDM 的构建过程中其数据未经任何内插处理,且直接采用实测水深作为其模型采样点,因此 TIN-DDM 在反映地形形态变化方面的优势相对突出,基于 TIN-

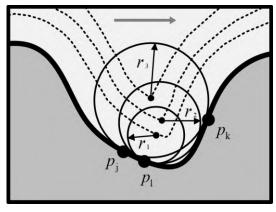
收稿日期: 2024-03-09

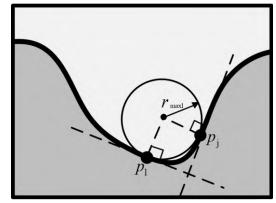
基金项目: 国家自然科学基金 (42071439; 41901320); 海军大连舰艇学院科研发展基金 (DJYKYKT2021-025)

第一作者:董箭,博士,副教授,主要从事海图制图理论、国家海洋权益方面的研究。navydj@163.com

通讯作者: 季宏超,硕士,助理工程师。jihongchao324459@163.com

DDM 的海底地形形态分析结论相对更加准确^[1-3,7]。虽然 TIN-DDM 所具备的上述特性与强调海底地形形态分析及特征表达的非航海 DDM 应用需求高度匹配,但随着海底观探测技术的发展,水深数据密度的较大提升也为其在非航海的应用领域带来了尺度变换的需求及数据化简的障碍^[8-10]。因此近年来,专门针对非航海 TIN-DDM 应用需求的自动综合算法研究愈发受到重视。


由于模型构建方式及应用场景的相似性,传统非航海 TIN-DDM 自动综合算法多数由陆地不规则三角 网数字高程模型 (TIN-Digital Elevation Model, TIN-DEM) 多尺度表达算法改进获得,如: 信息量判别法、 三角面片法矢量夹角法、点面距法、三维 Douglas-Peucker 法等[11-14]。虽然从原理上将针对 TIN-DEM 的综 合算法直接引入到 TIN-DDM 中具有一定可行性,但由于数据获取方式的特殊性,水深数据采集时无法直 接获得完整的地形控制信息,采用算法套用的方式会使得 TIN-DDM 的综合结果难以满足非航海 TIN-DDM 对海底地形特征信息深层次挖掘的应用需求[15]。为在非航海 TIN-DDM 的自动综合中实现海底地形特征的 挖掘,文献[7]利用滚动球变换的地形形态定量识别特性,构建了采样点地形类型与滚动球半径的关联模 型,通过对滚动球接触点与滚动球半径的数值关联性分析,实现了面向非航海 TIN-DDM 地形形态连续尺 度表达的滚动球变换[16]。虽然该算法在一定程度上解决了传统算法存在的地形形态划分边界不明确、空间 尺度认知存在差异的问题,但由于其仍无法实现采样点地形特征的定量评价,使得其综合结果难以同时顾 及海底地形形态识别的准确性及整体海底地形特征维护的充分性[15]。为兼顾海底地形形态的准确识别与海 底地形特征的充分维护,文献[15]将地形形态识别范围的概念引入 TIN-DDM 采样点地形类型与滚动球半 径的关联模型,通过构建采样点微观(宏观)地形类型与滚动球临界半径关联模型与面向海底地形形态识 别的采样点地形特征定量评价指标,实现了采样点地形类型的定量识别及特征量化评估。虽然该算法够在 识别海底地形形态的基础上有效维护海底地形特征,但由于其临界滚动球半径的求解原理上存在一定局限 性,降低了其算法综合结果的地形精度,削弱了地形特征维护效果,且算法中临界滚动球半径求解效率偏 低,使得该算法难以对大数据量水深数据进行快速处理,进而间接影响了算法本身的适用性。


随着非航海 TIN-DDM 自动综合算法的研究发展,算法本身对海底地形特征信息的挖掘不断深入,TIN-DDM 采样点地形特征表达也从定性分析转变为定量评价,使得其综合结果在地形形态维护方面的效果持续提高。但需要指出的是,作为 TIN-DDM 采样点地形特征定量表达的核心因子,临界滚动球半径的计算精度决定着算法综合结果对地形形态维护效果,其求解方式更是影响着算法整体运行的速率(工程应用的关键)。因此,本文在深入分析临界滚动球半径物理意义及其当前求解方式局限性的基础上,以临界滚动球与 TIN-DDM 采样点法向量的关系为纽带,构建了一种新的正负临界滚动球半径计算流程,提出了临界滚动球半径优化的非航海 TIN-DDM 自动综合算法。

1 临界滚动球半径及原求解方法的局限性

1.1 临界滚动球半径的物理意义及相关性质分析

为便于叙述 TIN-DDM 采样点临界滚动球半径的局限性及快速求解方法,首先引入滚动球变换的概念。参照文献 [17],滚动球变换定义为三维空间中存在一球体 (滚动球) 在 TIN-DDM 地形表面连续滚动生成缓冲面的过程。根据滚动球在 TIN-DDM 地形上、下表面滚动的差异,滚动球变换可分为正向变换与负向变换。临界滚动球则是 TIN-DDM 在滚动球变换的过程中,随着滚动球半径 r 逐渐的增大,各采样点由滚动球接触点变为非接触点的临界状态,该临界状态下的滚动球即为临界滚动球,其半径为临界滚动球半径,根据滚动球变换方向的差异,临界滚动球半径也可分为正向临界滚动球半径与负向临界滚动球半径。图 1 (a) 所示为正向临界滚动球半径求解过程分析(负向同理)。其中:黑色实线圆表示滚动球; r_i 表示滚动球半径,i=1,2,3,其数值关系满足如下关系式: $r_1 < r_2 < r_3$;黑色实线表示 TIN-DDM 地形纵向剖面; 黑色虚线表示滚动球球心位于 TIN-DDM 上表面滚动形成的上缓冲面纵向剖面; "●" TIN-DDM 采样点。

(a) 临界滚动球半径求解过程分析

(b) 临界滚动球性质分析

图 1 正向滚动球变换纵向剖面图

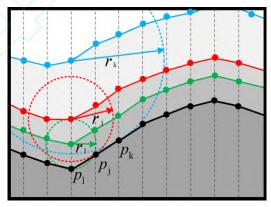
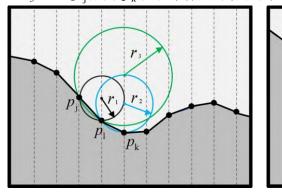
Fig. 1 Longitudinal Section of Forward Rolling Ball Transformation

由图 1 (a) 可知,在 TIN-DDM 进行滚动球变换过程中,当滚动球半径为 r_1 时,滚动球始终与采样点 p_1 接触。但随着滚动球半径的增大,当滚动球半径为 r_2 时,对于采样点 p_1 而言,此时滚动球 p_1 处于临界状态,及若滚动球半径继续增大,如采样点半径为 r_3 ,滚动球会受到周边地形影响(采样点 p_1 、、 p_2 、 p_3 为与 p_4 不在接触,故采样点 p_4 的正向临界滚动球半径为 p_4 (p_4)。且由图 p_4 1 (b) 所示,假设 TIN-DDM 表面光滑,由海底地形连续可微的特性可知,TIN-DDM 的局部地形表面与临界滚动球相交与 p_4 、、 p_4 ,TIN-DDM 的局部地形表面在 p_4 与 p_4 的切平面与临界滚动球相切。

根据上述分析与临界滚动球半径的定义可知,在假设 TIN-DDM 地形表面为光滑表面的前提下,任意采样点 p_1 与其所对应的正向(负向)临界滚动球及半径 $r_{\max l}$ ($r'_{\max l}$)间具有如下性质:① p_1 与临界滚动球接触,且 $r_{\max l}$ 、 $r'_{\max l}$ 值唯一;②临界滚动球球心与 p_1 的连线垂直于局部地形表面;③正向(负向)临界滚动球边界除与 p_1 本身接触外必接触其余采样点,且滚动球球心与其接触点均垂直于地形表面,其距离为 $r_{\max l}$ ($r'_{\max l}$),但内部不包含采样点。

1.2 原临界滚动球半径求解方法的局限性分析

为便于叙述在文献[15]中临界滚动球半径的求解方法,首先引入关键采样点的概念。关键采样点是在某一采样点 p_1 以 r 为缓冲半径(滚动球半径)构建其缓冲面纵向对应点的过程中起决定性作用的采样点 [18]。图 2 所示为不同缓冲半径下, TIN-DDM 正向缓冲面构建过程(负向同理)。 其中:" \bullet "(" \bullet "、" \bullet ")与"-"("-"、"-")分别表示在缓冲半径为 r_1 (r_1 、 r_k)时, TIN-DDM 采样点所对应缓冲面上的采样点及缓冲面纵向剖面;绿色(红色、蓝色)虚线圆表示半径为 r_1 (r_1 、 r_k)的滚动球。

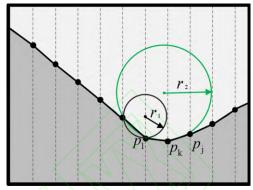

图 2 TIN-DDM 正向缓冲面构建过程

Fig. 2 TIN-DDM Positive Buffer Surface Construction Process

由图 2 可知,在缓冲半径为 r_1 时,采样点 p_1 所对应的缓冲面采样点位置确定仅与过该点本身的滚动球有关,则在滚动球半径为 r_i 时 p_1 为该点本身的关键采样点。而当滚动球半径为 r_j 、 r_k 时, p_1 所对应的缓冲面采样点位置确定分别与 p_j 、 p_k 有关,则在滚动球半径为 r_j 、 r_k 时 p_1 的关键采样点分别为 p_j 、 p_k 。值得注意的是,关键采样点始终与滚动球接触,如绿色虚线圆与 p_1 接触,红色虚线圆与 p_j 接触。

通过滚动球接触点与滚动球半径的数值关联性分析,获得各采样点在缓冲半径(滚动球半径)由小到大变化过程中(0 到∞)的所有关键采样点,利用关键采样点与滚动球接触的特性满足 1.1 小节有关临界滚动球半径性质①的要求,将采样点作为自身关键采样点的滚动球半径区间与该采样点作为其他采样点的关键采样点半径区间进行求并运算,运算结果的最大边界值即为该点的正向临界滚动球半径 $^{[16]}$ 。图 3 (a) 所示为采样点 p_1 的正向临界滚动球半径求解过程(负向同理)。其中,黑色实线圆的半径表示采样点 p_1 以自身作为关键采样点的最大半径,其值为 p_1 ,蓝色实线圆的半径表示采样点 p_1 成为 p_2 ,关键采样点的最小半径,其值为 p_2 ,绿色实线圆的半径表示采样点 p_1 成为 p_2 ,关键采样点的最大半径,其值为 p_2 ,绿色实线圆的半径表示采样点 p_1 成为 p_2 ,关键采样点的最大半径,其值为 p_2 ,

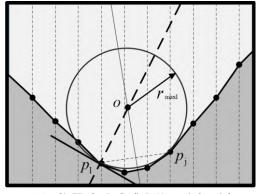
(a) 临界滚动球半径求解过程

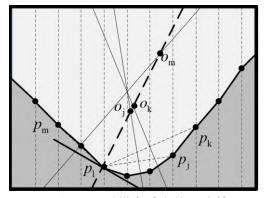
(b) 临界滚动球半径求解问题

图 3 正向临界滚动球半径求解及问题分析

Fig. 3 Solving and Problem Analysis of Positive Critical Rolling Ball Radius

根据上文所述采样点临界滚动球半径的求解过程,采样点 p_1 的正向临界滚动球半径为区间 $(0,r_1)$ 与区间 (r_2,r_3) 求并的最大值,即 $r_{\max 1} = \max((0,r_1) \cup (r_2,r_3)) = r_3$ 。需要指出的是,虽然由于 TIN-DDM 数据的离散性,使得文献 [15] 所求滚动球临界半径只能逼近真实值而无法达到真实值,但上述方法依然存在一定缺陷使得其所求滚动球临界半径结果与真实值相差过大。如图 3(b)所示, p_1 的真实临界滚动球半径逼近于绿色实线圆的半径 r_2 ,而在 p_k 所在局部地形内,由于采样点 p_j 的影响使得 p_1 并不会成为 p_k 的关键采样点,导致了 p_1 的临近滚动球半径 $r_{\max 1}$ ($\max((0,r_1) \cup \varnothing) = r_1$) 远小于 r_2 ,该现象造成了文献 [15] 所提算法所求解的采样点临界滚动球半径与真实值偏差过大。


由于在 TIN-DDM 的自动综合中,文献[15]所述算法的综合点序优先级取决于采样点地形特征评价指标值,而在其评价指标中,无论是其中所涉及的采样点地形类型属性的判定还是地形特征评价指标值的具体求解均仅与临界滚动球半径相关,因此该问题的出现将直接影响文献[15]所提算法对 TIN-DDM 的综合效果。


2 临界滚动球半径优化求解

临界滚动球半径的求解关键在于将临界滚动球半径所具备的相关特性进行模拟表达,考虑到 1.1 小节 所总结的关于临界滚动球半径的三点性质即为临界滚动球半径求解的三点要求,本文将 TIN-DDM 采样点的法向量引入到其计算过程中,通过采样点的空间位置与临界滚动球半径的数值分析,设计临界滚动球半径计算流程,实现临界滚动球半径的优化求解,最终达到综合算法结果优化改进的目的。

2.1 临界滚动球半径的优化求解原理

根据 1.1 小节有关临界滚动球半径的相关性质分析可知,合理求解 TIN-DDM 采样点临界滚动球半径的值,其关键在于明确临界滚动球球心的空间位置。由性质②可知,过任意采样点 p_1 的 TIN-DDM 地形局部表面切平面法向量所在直线必然经过滚动球球心,且由性质③可知临界滚动球球心到其它接触点的距离相等,基于此即可确定临界滚动球球心的空间位置。图 4 (a) 所示为 TIN-DDM 采样点 p_1 正向临界滚动球半径的求解原理(负向同理)。其中,虚线表示过 p_1 的直线,该直线与 p_1 所在<u>局部</u>地形法向量的方向一致;黑色实线(细)表示过 p_1 与 p_1 中点平面的纵向剖面,该平面的法向量为 p_1p_2 。

(a) 临界滚动球球心位置求解过程

(b) 不同采样点球心位置比较

图 4 正向临界滚动球半径的求解原理

Fig. 4 Principle of the Positive Critical Rolling Ball Radius Solving

假设 p_1 的临界滚动球在除 p_1 外与 p_j 接触,则 p_1 的临界滚动球球心 o 为图 a(a) 中虚线与实线(细)的交点。然而,理论上在 p_1 的正向临界滚动球球心的求解过程中,在过 p_1 切平面上方的任意采样点均可求得其与 p_1 的正向临界滚动球球心,如图 a(b) 所示。因此,求取任意采样点(a(b) 的临界滚动球半径的关键在于临界滚动球与其非本身接触点(a(b) 所示。因此,求取任意采样点(a(b) 的临界滚动球半径的关键在于临界滚动球内部存在一采样点 a(b) ,过线段 a(b) 中点并以向量 a(b) 为法向量的平面交虚线与点a(b) 为法向量的平面交虚线与点a(b) 为法向量的平面交虚线于点 a(b) 为法向量的平面交虚线于点 a(b) 和一三角形空间关系易知:a(b) 和 a(b) 和 a(b) 和 a(b) 的 a(b) 和 a(

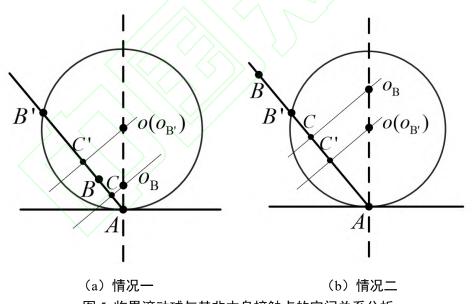


图 5 临界滚动球与其非本身接触点的空间关系分析

Fig. 5 Analysis of Spatial Relationship Between Critical Rolling Ball and Its Non-Self Contact Point

结合上述分析结论与 1.1 小节性质③可知,任意采样点 p_1 的正向临界滚动球半径是其切平面上方的任意采样点所求球心位置距 p_1 的最小值,此时可同时满足性质③中 p_1 的非本身接触点距临界滚动球球心的距离为 r_{\max} ,且内部不包含其余采样点。需要注意的是,由于 TIN-DDM 采样点的离散性,球心与非本身接触点的方向向量并不能完全等同于 TIN-DDM 在非本身接触点所在局部地形的法向量,所求的临界滚动球半径只能无限逼近真实值。基于上述方法,对在图 3 (b) 所示地形中文献[15] 求解临界滚动球半径方法所存在的问题进行优化,其过程如图 6 所示。其中,红色实线圆表示本文方法所求得 p_1 的临界滚动球,其半径为 r_3 。

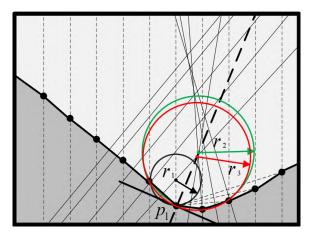


图 6 正向临界滚动球半径的优化求解过程及对比分析

Fig. 6 Optimal Solving Process and Comparative Analysis of Positive Critical Rolling Ball Radius

如图 6 所示, r_1 (文献[15] 所求解 p_1 的正向临界滚动球半径)、 r_2 (p_1 真实的正向临界滚动球半径)、 r_3 (本文方法所求解 p_1 的正向临界滚动球半径)满足以下关系式: $r_1 < r_2 < r_3$,且 $r_1 \ll r_2 \approx r_3$ 。因此可得结论,本文方法可有效克服文献[15] 在求解临界滚动球半径中所存在的问题。

2.2 临界滚动球半径计算模型

2.2.1 基于主成分分析法求解 TIN-DDM 采样点法向量

准确求取 TIN-DDM 采样点所在局部地形切平面法向量是本文求解其临界滚动球半径的基础,主成分分析法是一种常见的 TIN-DDM 采样点法向量提取方法^[19-22],基本步骤如下。

- 1) 采样点 p_i (i=1,2...n)以 r_i 为半径建立局部球邻域采样点集 $set(p_i)$,点集内采样点个数为 N,即搜索距 p_i 最近的 N-1 个点。
 - 2) 根据 $set(p_i)$ 内采样点的三维坐标 (x,y,z) 构建 N×3 矩阵 P 并进行中心化操作;
 - 3) 计算其协方差阵 cov_P, 并求解 cov_P 的特征值与特征向量;
 - 4) 将最小特征值 λ 对应的特征向量 α , 作为 $set(p_i)$ 拟合曲面在 p_i 处切平面的法向量;
 - 5) α_i 与 (0,0,1) 点乘,若其值小于 0,则 $\alpha_i = -\alpha_i$ 。

需要注意的是,N 的取值与 TIN-DDM 采样点数据密度相关,合理的取值是精确计算采样点法向量的关键。TIN-DDM 采样点法向量的计算结果示意图如图 7 所示。

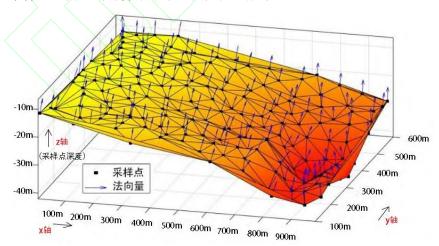


图 7 TIN-DDM 采样点法向量示意图

Fig. 7 Schematic Diagram of Normal Vector of TIN-DDM Sampling Point

2.2.2 正负向临界滚动球半径计算流程

根据 2.1 小节临界滚动球半径的优化求解原理与 2.2.1 小节对 TIN-DDM 采样点法向量的计算结果,本节具体地给出 TIN-DDM 任意采样点 p_i 正负向临界滚动球半径的求解流程,其基本步骤如下:

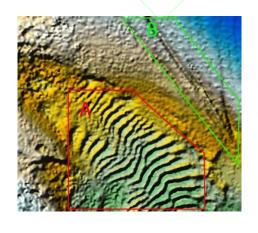
1) 计算采样点 p_i (i=1,2...n) 的法向量 α_i , $\alpha_i = (m_1, m_2, m_3)$, p_i 的坐标为(x_i , y_i , z_i);

- 2) 求解 p_i 与 p_i (j = 1, 2...n) 的中点坐标 (x_{ij}, y_{ij}, z_{ij}), 其中 $i \neq j$;
- 3) 求解向量 $P_i P_j$, $P_i P_j = (x_i x_i, y_i y_i, z_i z_i) = (n_1, n_2, n_3)$;
- 4) 求解过 p_i 并与 α_i 同向的直线参数方程,如(1)式所示:

5) 求解过 p_i 、 p_i 中点以 $p_i p_j$ 为法向量的平面方程,如(2)式所示:

6) 联立(1)式、(2)式可求参数 t,如(3)式所示:

$$t = \frac{n_1 \times (x_{ij} - x_i) + n_2 \times (y_{ij} - y_i) + n_3 \times (z_{ij} - z_i)}{n_1 \times m_1 + n_2 \times m_2 + n_3 \times m_3}$$
 (3)


- 7) 将参数 t 带入 (1) 式求得交点,并计算交点到 p_i 的距离 $dist_{ii}$;
- 8) 如果 $p_i p_j \bullet \alpha_i > 0$ 将 $dist_{ij}$ 记录到集合 set1 中, $\overrightarrow{p_i p_j} \bullet \alpha_i < 0$ 将 $dist_{ij}$ 记录到集合 set2 中;
- 9)返回步骤 2 遍历下一采样点,直至除 p_i 外的采样点全部遍历完毕;
- 10)计算 p_i 的正向临界滚动球半径 $r_{maxl} = min(set1)$, p_i 的负向临界滚动球半径 $r'_{maxl} = min(set2)$,其中, min() 表示寻找集合中的最小值。

最后需要注意的是,作为文献[15]算法判定 TIN-DDM 采样点地形属性与评价采样点地形特征的参数,临界滚动球半径的优化过程并不改变文献[15]算法的整体流程,即本文改进算法的采样点宏观(微观)地形类型与临界滚动球半径的关联模型、采样点地形特征定量评价指标均与文献[15]算法相同,因此两种算法的优劣可等价于临界滚动球半径求解准确性的差异。

3 实验与分析

3.1 有效性分析实验

为验证本文所提基于临界滚动球半径优化求解的非航海 TIN-DDM 自动综合算法的有效性,本文在 C#环境下实现了该算法(以下简称算法 I)与文献[15]算法(以下简称算法 II),并通过 Surfer 与 Matlab 对实验结果进行显示与分析。实验数据为我国某海区的一组水深数据集所构建的 TIN-DDM,该 TIN-DDM 共包含 12774 个采样点,数据集的地形形态与统计指标如图 8 与表 1 所示。

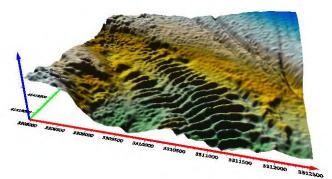
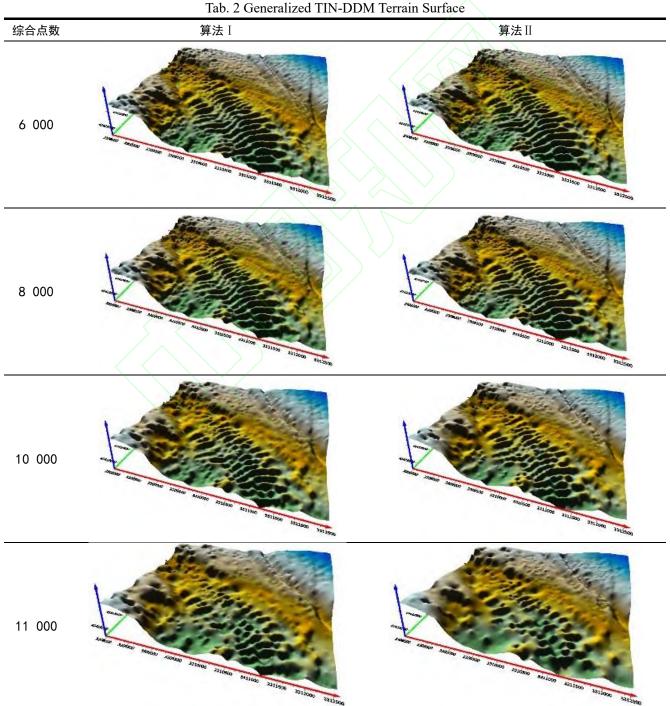


图 8 TIN-DDM 地形形态 Fig.8 Topographic Forms of TIN-DDM

表 1 数据集整体统计指标

Tab. 1 Overall Statistical Indicators of Dataset


水深点个数	深度均值/m	深度中位数/m	深度方差/m²	深度最大值/m	深度最小值/m
12 774	-62.07	-66	261.58	-13.3	-95

其中:红色实线内的区域为海底沟壑构成的面状区域(简称区域 A);绿色实线内的区域为海底沟壑构成的条带状区域(简称区域 B)。

3.1.1 定性对比实验分析

为定性的对比算法 I 与算法 II 的综合效果,本文分别采用两种算法对实验数据进行定量综合处理,其中,算法 I 的参数 N 取 6。综合过程中,删除的 TIN-DDM 采样点数量分别为 6000、8000、10000、11000、12000。自动综合后的 TIN-DDM 地形表面及采样点散点图如表 2、表 3 所示。

表 2 综合后的 TIN-DDM 地形表面 Tab. 2 Generalized TIN-DDM Terrain Surface

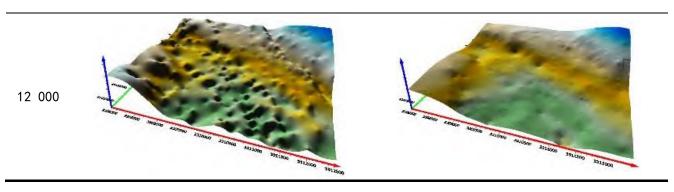
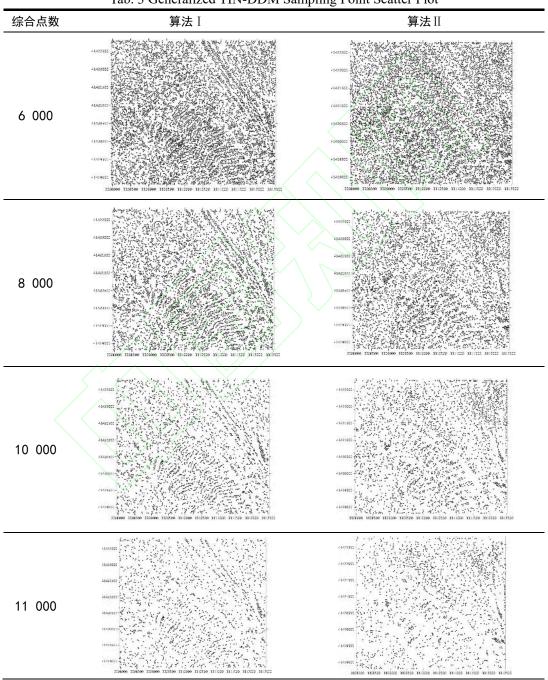
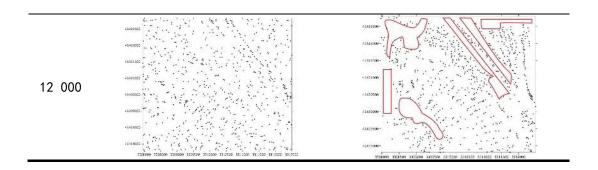




表 3 综合后的 TIN-DDM 采样点散点图 Tab. 3 Generalized TIN-DDM Sampling Point Scatter Plot

实验结果表明:①由表 2 可知,在采样点自动综合数量为 6 000、8 000、10 000 时,两种算法均较好的保持了原有 TIN-DDM 地形表面主要的形态与特征。但随着综合尺度的增大,当采样点自动综合数量为 11 000、12 000 时,算法 I 所综合的效果明显优于算法 II ,尤其在采样点综合数量为 12 000 时,算法 I 所得结果对区域 A、B 均有一定程度上的地形特征保持,而算法 II 在区域 A、B 的地形特征基本消失;②由表 3 可知,两算法在 TIN-DDM 采样点的自动综合中,随着综合尺度的增大,算法 I 所保留的采样点分布更为平均,综合后的连续大面积空白区域相对较少,如采样点综合数量为 12 000 时算法 II 中的红色框区域,该现象也进一步表明算法 I 的适用性强于算法 II 。出现上述两点现象主要原因在于:相比于算法 II,算法 I 所求解得临界滚动球半径更加逼近真实数值,使得其采样点地形类型属性判定的结果跟为合理,采样点地形特征评价指标求解更加准确,最终使得其综合效果更加优异。

3.1.2 定量对比实验分析

为进一步定量对比算法 I 与算法 II 的综合效果在 TIN-DDM 精度保持方面的优劣,本文分别对综合后 采样点所构建 TIN-DDM 与原始 TIN-DDM 深度之间的绝对误差极大值、平均绝对误差、均方根误差^[23-24] 进行计算,两种算法综合结果的精度评估统计如表 4 所示。

表 4 综合精度对比分析 Tab. 4 Comparative Analysis of Generalization Accuracy

	rue. I compared that you of constant and in the care					
综合点数	绝对误差极大值/m		平均绝对误差/m		均方根误差/m	
	算法Ⅰ	算法II	算法 I	算法Ⅱ	算法Ⅰ	算法Ⅱ
6 000	5.749	5.769	0.384	0.386	0.578	0.594
8 000	7.422	7.462	0.553	0.567	0.887	0.902
10 000	9.493	10.094	0.852	0.862	1.265	1.301
11 000	11.417	14.171	1.088	1.190	1.595	1.792
12 000	12.901	24.780	1.480	3.613	2.113	4.898

实验结果表明:在采样点自动综合数量为 6 000、8 000、10 000 时,算法 I 所得结果的地形精度略优于算法 II。但随着综合尺度的增大,当采样点自动综合数量为 11 000、12 000 时,算法 I 所得结果的地形精度明显优于算法 II。因此相对于算法 II,算法 I 具有较高的算法精度,且该现象在大尺度综合的情况下更加明显。

3.2 运行效率对比实验

为对比两算法运行效率上的优劣,本文在 3.1 小节实验数据(以下简称数据 A)的基础上在选取两组数据(以下简称数据 B、C),并分别采用两算法对三组数据定量删减 5 000 个采样点,两算法的运行时间如表 5 所示。其中数据 B 包含 26 424 个采样点,数据集 C 包含 48 300 个采样点。

表 5 算法运行效率对比/s

Tab. 5 Comparison of Algorithm Operating Efficiency/s

数据 A		数	据 B		数据 C		
算法I	算法Ⅱ	算法Ⅰ	算法II	算法Ⅰ	算法Ⅱ		

137.2	511.7	515.1	2438.3	1909.1	10843.9
137.2	511.7	313.1	2 130.3	1707.1	100 15.7

实验结果表明:在采样点删减数量相同时,算法 I 的运行效率均优于算法 II 。对于数据集 A 算法 II 的运行时间为算法 I 的 3.72 倍,数据集 B 为 4.73 倍,数据集 C 为 5.67 倍。出现上述现象主要原因在于:由于算法 I 与算法 II 的差异仅在于临界滚动球半径的求解方式,因此临界滚动球半径求解的速度差异是两算法运行效率优劣的关键。根据 1.2 小节所述,算法 II 在求取任意采样点 p_i 的正(负)临界滚动球半径过程实际上是一个寻找 p_i 正(负)关键采样点的过程。根据文献 [18] 可知,在寻找 p_i 的关键采样点前,需要判断除 p_i 以外采样点的等距离球面是否在 p_i 的 z 轴方向上形成极大 (小)值,并将形成极大 (小)值的采样点构建为 p_i 的正(负)关键采样点集,随后在寻找 p_i 的正(负)关键采样点的过程中,需要以递进的方式不断确定 p_i 在 z 轴方向上的关键采样点与其相应区间。而根据 2.2 小节可知,算法 I 的正(负)向临界滚动球半径是通过直接计算两点距离并以判断正(负)向临界滚动球半径集合中最小值的方式确定其值,该方式从原理上降低了临界滚动球半径的复杂程度,最终使得算法 I 的运行效率优于算法 II 。

4 结语

本文的创新点在于提出一种 TIN-DDM 采样点临界滚动球半径优化求解方法,并将该方法引入到文献 [15]实现该算法的改进。本文算法基于临界滚动球半径的物理意义及其与临界滚动球相关的三点性质,在 深入分析 [15] 算法求解临界滚动球半径局限性的基础上,利用上述性质作为临界滚动球半径求解条件,阐明了临界滚动球半径优化求解的原理及具体计算流程。为验证其有效性,本文在相关实验数据集上,分别从定性与定量的角度验证了对本文算法在综合效果、地形精度、运行效率三方面的优势。但需要注意的是,作为本文算法临界滚动球半径求解方法的前提条件,采样点所在局部地形曲面切平面的法向量求解精度与本文算法综合效果密切相关,而由于数据本身是离散化的采样点,故法向量求取结果的精确性与采样点的密度及其所在空间位置密切相关,因此深入分析采样点密度及空间位置对法向量求解的影响,并依此对法向量求解进行优化是本文算法今后的改进重点。

参考文献:

- [1] Li Zhilin, Zhu Qing. Digital Elevation Model[M]. Wuhan: Wuhan University Press, 2001: 78-91. (李志林,朱庆. 数字高程模型[M]. 武汉:武汉大学出版社,2001:78-91.)
- [2] Zhang Lihua, Jia Shuaidong, Yuan Jiansheng, et al. A Method for Controlling Shoal-bias Based on Uncertainty[J]. Acta Geodaetica et Cartographica Sinica,2012,41(2):184-190. (张立华,贾帅东,元建胜,等. 一种基于不确定度的水深控 浅方法[J]. 测绘学报,2012,41(2):184-190.)
- [3] Porathe T. 3D Nautical Charts and Safe Navigation[D]. Eskilstuna: Malardalen University, 2006.
- [4] Jia Shuaidong, Zhang Lihua, Dong Jian, et al. A Method for Constructing DDM Serving for Navigation Using Pre-constructed Model Surface to Control and Adjust the Selection of DDM Nodes[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11):1715-1722. (贾帅东,张立华,董箭,等. 利用拟构模型面调控水深模型点选取的航海 DDM 构建[J]. 武汉大学学报(信息科学版),2019,44(11):1715-1722.)
- [5] Zhang Lihua, Jia Shuaidong, Wu Chao, et al. A Method for Interpolating Digital Depth Model Considering Uncertainty[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(3):359-365. (张立华, 贾帅东, 吴超, 等. 顾及不确定度的数字水深模型内插方法[J]. 测绘学报, 2011, 40(3):359-365.)
- [6] Tian Fengmin, Zhao Yuxin, Li Lei, et al. A Method of Constructing Undersea TIN-DEM Based on Vector Nautical Chart[J]. Journal of Harbin Engineering University, 2009, 30(2):143-147, 153. (田峰敏,赵玉新,李磊,等.由矢量电子海图构建海底 TIN-DEM 方法研究[J]. 哈尔滨工程大学学报, 2009, 30(2):143-147, 153.)
- [7] Dong Jian, Peng Rencan, Zhang Lihua, et al. Research on Optimization Digital Depth Modeling and Rolling Ball Transform Processing[M]. Beijing: Surveying and Mapping Press, 2020:161-170. (董箭,彭认灿,张立华,等.数字水深优化建模及滚动球处理技术[M]. 北京:测绘出版社,2020:161-170.)

- [8] Tang Yuhan. A Thin-method Based on Local Terrain Complexity Index for Lidar Bare Earth Surface Point Cloud[D]. Chengdu: Southwest Jiaotong University, 2019. (唐钰涵. 一种基于局部地形复杂度指标的机载 LiDAR 地面点云数据抽稀方法 [D]. 成都: 西南交通大学, 2019.)
- [9] Wang Yingxue, Li Shaomei, Ren Liqiu, et al. Automatic Generalization Methods of Cyberspace Point Cluster Features Considering Characteristics[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3):427-433. (王映雪,李少梅,任丽秋,等. 面向特征的网络空间点群要素自动综合方法[J]. 武汉大学学报(信息科学版),2021,46(3):427-433.)
- [10] Li Zhaoxing, Zhai Jingsheng, Wu Fang, et al. Seabed Terrain Complexity Representation and Computation Method for TIN[J]. Journal of Geomatics Science and Technology, 2018, 35(3):305-310. (李兆兴,翟京生,武芳,等.TIN 的海底 地形复杂度表示与计算方法[J]. 测绘科学技术学报, 2018, 35(3):305-310.)
- [11] Weber W. Automations Gest ützte Generalisierung[J]. Nachrichten aus dem Karten-und Vermessungswesen. 1982,88(1): 77-109.
- [12] Cai Xianhua, Zheng Tiandong. A Study of DEM Data Compression and Its Algorithm[J]. Bulletin of Surveying and Mapping, 2003, (12):16-18. (蔡先华,郑天栋. 数字高程模型数据压缩及算法研究[J]. 测绘通报,2003,(12):16-18.)
- [13] Xu Daozhu. Study on Cartographic Generalization of Relief Based on TIN and RGD[D]. Zhengzhou: Information Engineering University, 2007. (徐道柱. 基于 TIN 和 GRD 的地貌综合研究[D]. 郑州:信息工程大学, 2007.)
- [14] Fei Lifan, He Jin, Ma Chenyan, et al. Three Dimensional Douglas-Peucker Algorithm and the Study of Its Application to Automated Generalization of DEM[J]. Acta Geodaetica et Cartographica Sinica,2006,35(3):278-284. (费立凡,何津,马 晨燕,等. 三维 Douglas-Peucker 算法及其在 DEM 自动综合中的应用研究[J]. 测绘学报,2006,35(3):278-284.)
- [15] Ji Hongchao, Dong Jian, Li Shujun, et al. Three Dimensional Douglas-Peucker Algorithm and the Study of Its Application to Automated Generalization of DEM[J/OL]. Acta Geodaetica et Cartographica Sinica, https://kns.cnki.net/kcms/detail/11.2089.p.20221031.1807.002.html. (季宏超,董箭,李树军,等. 兼顾地形形态与特征的非航海 TIN-DDM 自动综合算法[J/OL]. 测绘学报, https://kns.cnki.net/kcms/detail/11.2089.p.20221031.1807.002.html.)
- [16] Zhang Zhiheng, Dong Jian, Peng Rencan, et al. Division of TIN-DDM Topographic Forms and Continuous Scale Representation Based on Rolling Ball Transformation[J]. Acta Geodaetica et Cartographica Sinica,2020,49(5):644-655. (张志衡,董箭,彭认灿,等. 基于滚动球模型的 TIN-DDM 地形形态划分及连续尺度表达[J]. 测绘学报,2020,49(5):644-655.)
- [17] Dong Jian, Peng Rencan, Zhang Lihua, et al. Multi-scale Representation of Digital Depth Model Based on Rolling Ball Transform[J]. Journal of Geo-Information Science, 2012, 14(6):704-711. (董箭,彭认灿,张立华,等. 滚动球变换的数字水深模型多尺度表达[J]. 地球信息科学学报, 2012, 14(6):704-711.)
- [18] Dong Jian, Zhang Zhiheng, Peng Rencan, et al. TIN-DDM Buffer Surface Construction Algorithm Based on Rolling Ball Acceleration Optimization Model[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):654-667. (董箭,张志衡,彭认灿,等. 不规则三角网数字水深模型缓冲面快速构建的滚动球加速优化算法[J]. 测绘学报,2019,48(5):654-667.)
- [19] Xuan Wei, Hua Xianghong, Zou Jingui, et al. A New Method of Normal Estimation for Point Cloud Based on Adaptive Optimal Neighborhoods[J]. Science of Surveying and Mapping , 2019, 44(10):101-108+116. (宣伟, 花向红, 邹进贵, 等. 自适应最优邻域尺寸选择的点云法向量估计方法[J]. 测绘科学, 2019, 44(10):101-108+116.)
- [20] Feng Lin, Li Binbing. A Robust Normal Estimation Method for Terrestrial Laser Scanning Point Cloud Based on Minimum Covariance Determinant[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11):1647-1653. (冯林,李斌兵. 一种基于最小广义方差估计的 TLS 点云抗差法向量求解方法[J].武汉大学学报(信息科学版), 2018, 43(11):1647-1653.)
- [21] Ma Weifeng, Wang Jinliang, Zhang Jianpeng, et al. Feature Extraction From Point Cloud Based on Improved Normal Vector[J]. Science of Surveying and Mapping, 2021, 46(11):84-90+146. (麻卫峰,王金亮,张建鹏,等.一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11):84-90+146.)
- [22] Wang Haibo, You Wei, Fan Dongming, et al. Using ICA to Extract the Water Storage Variations Signals of the Okavango Delta[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1):93-103. (王海波,游为,范东明,等. 利用 ICA 方法提取奥卡万戈三角洲水储量变化信号[J]. 武汉大学学报(信息科学版),2022, 47(1):93-103.)
- [23] Du Hao, Zhu Junfeng, Zhang Li, et al. A Thinning Method of LiDAR Point Clouds Considering Terrain Features[J]. Science of Surveying and Mapping, 2016, 41(9):140-146. (杜浩,朱俊锋,张力,等. 顾及地形特征的 LiDAR 点云数据抽稀算

法[J]. 测绘科学, 2016, 41(9):140-146.)

[24] Wang Xi. Research on Interpolation Algorithm and Accuracy Assessment of DEM[J]. Modern Surveying and Mapping,2013,36(5):21-23. (王晞. DEM 内插算法与精度评定研究[J]. 现代测绘,2013,36(5):21-23.)

网络首发:

标题: 临界滚动球半径优化的非航海 TIN-DDM 自动综合算法

作者: 董箭,季宏超,刘国辉,唐露露,陈阳

收稿日期: 2024-03-09

DOI:10.13203/j.whugis20220719

引用格式:

董箭,季宏超,刘国辉,等. 临界滚动球半径优化的非航海 TIN-DDM 自动综合算法[J].武汉大学学报 (信息科学版),2024,DOI: 10.13203/j.whugis20220719 (DONG Jian, JI Hongchao, LIU Guohui, et al. Non-navigational TIN-DDM Automatic Generalization Algorithm for Optimizing Critical Rolling Ball Radius [J].Geomatics and Information Science of Wuhan University,2024,DOI: 10.13203/j.whugis20220719)

网络首发文章内容和格式与正式出版会有细微差别,请以正式出版文件为准!

您感兴趣的其他相关论文:

基线段长度限定的领海基点优化选取算法

董箭, 彭认灿, 李宁, 刘国辉, 唐露露

武汉大学学报(信息科学版), 2023, 48(9): 1473-1481.

http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210191

利用卡尔曼滤波改正多波束数据声速整体误差

肖元弼, 彭认灿, 暴景阳, 董箭, 吕程 武汉大学学报(信息科学版), 2020, 45(9): 1461-1468. http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20180261

利用拟构模型面调控水深模型点选取的航海 DDM 构建

贾帅东, 张立华, 董箭, 彭认灿

武汉大学学报(信息科学版), 2019, 44(11): 1715-1722.

http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20180087