

武汉大学学报(信息科学版) Geomatics and Information Science of Wuhan University ISSN 1671-8860,CN 42-1676/TN

《武汉大学学报(信息科学版)》网络首发论文

题目: 联合 InSAR 和地震波数据反演甘肃积石山 Ms6.2 地震震源时空破裂过程 作者: 方楠,孙凯,黄传超,柏承元,陈志丹,谢磊,杨知,徐英辉,解鸿斌,冯 光财,李志伟,许文斌

10.13203/j.whugis20240036

网络首发日期: 2024-03-26

方楠,孙凯,黄传超,柏承元,陈志丹,谢磊,杨知,徐英辉,解鸿斌,冯 光财,李志伟,许文斌.联合 InSAR 和地震波数据反演甘肃积石山 Ms6.2 地 震震源时空破裂过程[J/OL].武汉大学学报(信息科学版). https://doi.org/10.13203/j.whugis20240036

DOI:

引用格式:

www.cnki.net

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶 段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期 刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出 版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出 版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编 辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、 出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。 为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容, 只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国 学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷 出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出 版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首 发论文视为正式出版。 DOI:10.13203/j.whugis20240036

引用格式: 方楠,孙凯,黄传超,等. 联合 InSAR 和地震波数据反演甘肃积石山 Ms 6.2 地震震源时空破裂过程[J].武汉大学学 报(信息科学版),2024,DOI:10.13203/J.whugis20240036 (FANG Nan, SUN Kai, HUANG Chuanchao, et al. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan Earthquake [J].Geomatics and Information Science of Wuhan University,2024,DOI:10.13203/J.whugis20240036)

联合 InSAR 和地震波数据反演甘肃积石山 Ms 6.2 地震

震源时空破裂过程

方楠 1 孙凯 1 黄传超 1 柏承元 1 陈志丹 1.2 谢磊 1 杨知 3 徐英辉 3 解鸿斌 3 冯光财 1 李志伟 1 许文斌 1*

1 中南大学地球科学与信息物理学院,湖南 长沙,410083

2 莫斯科国立大学地质系,莫斯科 俄罗斯, 119991

3 中国电力科学研究院有限公司,北京,100192

摘要:北京时间 2023 年 12 月 18 日,在甘肃省临夏州积石山县发生了 Ms 6.2 地震,该地震发生在祁连山 内部的次级断裂拉脊山断裂上,该断裂活动强度较低,发震频率不高,本次地震为人们重新认识祁连山内 部这一特殊构造提供了很好的机会。利用 Sentinel-1A 卫星的升降轨数据获得了此次地震的同震地表变形, 采用贝叶斯反演方法确定了发震断层的几何参数,联合地震波数据反演了该地震的动态滑动分布。本次地 震的发震断层朝北东倾,倾角 32.2°,走向角~325.2°,滑动角~112°,发震断层呈现逆冲兼具右旋走滑 分量的运动性质。结合邻区主要活动断裂的断层几何和运动学特征,研究认为此次积石山地震发生在拉脊 山南缘北东倾的断层上。本次积石山地震所在的拉脊山断裂东段可能是青海南山断裂、拉脊山断裂西段和 西秦岭断裂的阶区转换构造,该阶区的左行右阶型挤压作用为本次逆冲型地震事件的驱动机制。 关键词:青藏高原东北缘;积石山 Ms 6.2 地震;联合反演;转换构造 中图分类号: P315 文献标识码: A

Joint Inversion of InSAR and Seismic Data for the Kinematic

Rupture Process of the 2023 Ms 6.2 Jishishan Earthquake

FANG Nan¹ SUN Kai¹ HUANG Chuanchao¹ BAI Chengyuan¹ CHEN Zhidan^{1,2} XIE Lei¹ YANG Zhi³ XU Yinghui³ XIE Hongbin³ FENG Guangcai¹ LI Zhiwei¹ XU Wenbin^{1*} 1 School of Geoscience and Info-Physics, Central South University, Changsha 410083, China 2 Department of Geology, Lomonosov Moscow State University, Leninskiye Gory

1,Moscow,119991,Russia

3 China Electric Power Research Institute, Beijing 100192, China

Abstract: Objectives:On December 18, 2023, Beijing time, an Ms 6.2 earthquake occurred in Jishishan County, Linxia Prefecture, Gansu Province. This event occurred on the Lajishan Fault, a secondary fault with low activity and infrequent seismicity in the Qilian Mountains. This

基金项目:国家重点研发计划(2022YFB3903602);国家自然科学基金(42388102, 42174023, 42304037);中南大学前沿交叉研究项目(2023QYJC006);湖南省自然科学基金重点项目(2024JJ3031);中南大学研究生自主探索创新项目(2021zzts0249);湖南省研究生科研创新项目(CX20210104)。 第一作者:方楠,博士生,主要从事大地测量资料和地震波的联合反演研究。fangnan@csu.edu.cn 通讯作者:许文斌,博士,教授。wenbin.xu@csu.edu.cn event provides a good opportunity to study this special structure within the Qilian Mountains. Methods:In this paper, we derived the co-seismic deformation field using both ascending and descending Sentinel-1A data. We applied the Bayesian inversion method to determine the source parameters of the seismogenic fault, and combined seismic wave records with InSAR data to model the dynamic slip distribution of this event. Results: The event has a northwest-dipping fault with a dip of 32.2°, a strike of 325.2° and a rake of 112°, indicating that this earthquake is a thrust event with a dextral slip component. Conclusions:By analyzing the fault geometry and kinematic characteristics of the primary active faults in the surrounding region, we found that the Jishishan earthquake occurred on the southern edge of the Laji Mountain. This study concludes that the Jishishan earthquake occurred on a northeast-dipping fault at the southern margin of the Laji Mountains. It also suggests that the eastern section of the Laji Mountain Fault, where the Jishishan earthquake occurred, may be a step-over structure between the Qinghai Nanshan Fault, the western section of the Laji Mountain Fault, and the West Qinling Fault. Additionally, it proposes that the left-running, right-step-type extrusion of the step-over zone is the driving mechanism of this retrograde seismic event.

Key Words: Northeast of Tibetan Plateau; Ms 6.2 Jishishan Earthquake; Joint Inversion; Transformation Tectonics

根据中国地震台网中心测定,北京时间 2023-12-18 23:59,我国甘肃省临夏州积石 山县发生了 Ms 6.2 地震,震源深度 10 km, 震中位于 35.70°N,102.79°E(图1(a)、 1(b))。本次积石山 Ms 6.2 地震事件位于 青藏高原东北缘的拉脊山断裂带上,地震造 成约 150 人遇难和近千人受伤,并伴随着大 量的崩塌、滑坡等地质灾害,其致灾程度超 过很多 7级以上地震^[1-2]。根据国内外地震 研究机构发布的震源机制和震形图模拟的 同震变形场^[3],本次积石山 Ms 6.2 地震为 一次典型的逆冲型事件,发震断层走向呈北 西-南东向,断层节面 I 为南西倾的低角度 (28°~46°)断层,节面II 为北东倾的高角 度(50°~62°)断层(表 1)。

合成孔径雷达干涉测量技术 (interferometric synthetic aperture radar, InSAR) 可捕捉地震周期性活动的高 空间分辨率地表形变特征^[4-5]。基于 InSAR 观 测获取的积石山 Ms 6.2 地震升降轨同震形 变场均显示地表变形以抬升为主,表明此次 地震为逆冲型事件,但前人研究认为仅依靠 InSAR 观测无法判定断层的倾向,即东北倾 和西南倾断层模型均能较好地拟合同震形 变^[6,7]。余震精定位结果显示,积石山 Ms 6.2 地震震中(35.745°N, 102.828°E)位于祁 连山内部的拉脊山断裂东段,震源深度约为 13.2 km, 余震序列整体呈北西-南东向展布, 展布长度约15 km,破裂深度主要集中在地 下 10~15 km (图 1 (c))。震源机制、大地 测量数据和余震序列显示,发震断层走向与 区域内已知的拉脊山断裂东段一致,但无法 明确发震构造为拉脊山断裂的南支还是北 支。

矛	₹1	不同机构和本研究获取的 2	2023 年积石山 Ms	6.2 级地震震源机制	

Tab.1 Focal mechanisms of the 2023 Jishishan Ms 6.2 earthquake published by different

institutions and this study

Ĩ	रमा क्रेन	佐南		承)[[5]	帝间		节面 I			节面II		
	研究 担約	步 伐	经度 (℃)		良 级 (Mw)	走向	倾角/	滑动角/	土白	倾角/	滑动角/	
	19121749	(N))受/ KIII	(MW)	/ (°)	(°)	(°)	疋凹	(°)	(°)	
	GCMT	35.83	102.81	18.9	5.9	303	52	62	164	46	122	
	USGS	35.74	102.83	10	5.94	333	62	88	156	28	93	
	GFZ	35.74	102.81	18	6.01	332	53	99	138	38	79	
	IG-CEA	35.68	102.79	10	5.96	307	50	71	155	44	111	

CENC	35.70	102.79	10	5.9	300	45	50	170	57	123
本文	35.77	102.76	7.7	6.0	325	32	112	120	61	77

注: GCMT: 全球矩张量; USGS: 美国地质调查局; GFZ: 德国地学中心; IG-CEA: 中国地震局地质研究所; CENC: 中国地震台网中心。

祁连山位于青藏高原向东北扩展的最 前缘,印度和欧亚板块碰撞的远程挤压效应 在该地区造成强烈的地壳挤压缩短和山体 隆升(图1(a))^[8-10]。历史研究主要集中在 祁连山几条大型的走滑边界断裂和山体内 部 NWW 向的挤压构造带上(图1(a))^[11-18]。 西祁连山的地壳缩短主要被五条近平行的 NWW 向褶皱-逆断裂带所吸收,由北向南依次 为祁连山北缘断裂、昌马断裂、疏勒南山断 裂、党河南山断裂和柴达木北缘断裂^[19-20]; 东祁连山以类块体东向挤出的形式响应地 壳缩短,在东祁连山地区构造变形和地震活 动主要集中在块体边界断裂带(海原断裂、 鄂拉山断裂和日月山断裂)上,块体内部断 裂的地震活动较弱[17-18,21]。拉脊山断裂位于 东祁连山内部青海南山断裂、日月山断裂和 西秦岭断裂的构造衔接带上, 断层结构复杂 (图1(a))^[21-23]。

拉脊山断裂的走向在断层中部发生明 显弯曲,由西段的 NWW 向转变为东段的 NNW 向,表现为向北东方向凸出的弧形挤压构造 (图 1 (a))^[22,24]。地质学研究认为, 拉脊 山是一条形成于加里东期的古老断裂带,经 过多期强烈的构造变动,是一个反映多阶段 构造抬升的构造窗^[25]。断错地貌显示,晚更 新世以来, 拉脊山断裂以逆冲活动为主, 兼 有少量左旋走滑分量[22-24, 26-27]。现今拉脊山 断裂的活动强度较相邻断裂更弱,基于水准 测量和GPS数据限定拉脊山断裂的垂直滑动 速率为1±0.5 mm/a^[27],明显低于日月山断 裂2.5±0.5 mm/a和西秦岭断裂的2.5±0.3 mm/a的左旋走滑速率^[28]。本次积石山Ms 6.2 地震所处的拉脊山断裂东段尚未有6级以上 强震记录,但存在过5级左右的中等强度地 震^[22]。无论是断层滑动速率或地震活动强度, 拉脊山断裂均不能与其邻近的大型走滑断 裂相提并论,考虑到拉脊山断裂的断层规模 和特殊发育位置,其更可能表现为某种转换 构造。本次积石山 Ms 6.2 地震为人们重新 认识祁连山内部这一特殊构造提供了很好

的机会。

本文首先利用 Sentinel-1A 卫星的升、 降轨影像数据获取了本次事件的同震地表 变形;然后假设断层面均已滑动,通过贝叶 斯反演方法获得发震断层的破裂范围、断层 几何和发震方式;进而联合远场体波数据反 演了 2023 年积石山 Ms 6.2 地震的震源破裂 过程;最后综合考虑地震破裂过程、同震变 形、断层几何和区域构造特点,分析了本次 事件的发震构造和孕震机制。

1 数据处理

1.1 远场体波观测数据

本文使用的远震数据来自 IRIS (Incorporated Research Institutions for Seismology)数据管理中心。为了尽可 能获得震源破裂的精准破裂过程,需扩大地 震台站方位角的覆盖范围,本文选取震中距 为 30°~90°的11个P波震相。首先从原 始数据中去除仪器响应获取速度波形记录 ^[29],然后再对远场波形数据进行 0.01~0.9 Hz的带通滤波,以及 5 Hz 的重采样,并截 取了P波到达前10 s,总共60 s 的数据长 度。远场体波的理论格林函数采用 Multitel3程序进行计算^[30]。计算格林函数 过程中,速度模型采用的是基于CRUST1.0模 型^[31]的地壳结构和 AK135 参考地球模型^[32]

1.2 InSAR 形变场观测数据

为获得积石山地震同震形变场,本文利 用 GAMMA 软件对 Sentinel-1A 升降轨数据进 行差分干涉处理(表 2)。在数据处理过程中, 距离向和方位向分别进行 10:2 多视处理以 提高影像信噪比,并采用 30 m 空间分辨率 的 SRTM 高程模型模拟去除地形相位^[33]。对 干涉图进行自适应滤波并利用最小费用流 法完成相位解缠,通过远场稳定区域拟合多 项式去除长波长的大气和轨道误差,并对断 层近场解缠误差进行手动掩膜。为了提高反 演的计算效率,本文采用四叉树采样法对形 变场进行降采样以减少数据量^[34]。InSAR 同

震形变的理论格林函数通过频率波数积分^[35]并根据区域分层波速模型^[36]计算。

Fig.1 Tectonic setting of the northeastern Tibetan Plateau and the Jishishan earthquake

Tab 2	Sentinel-1A	images	used	in	this	studv
100.2		Innuguo	uscu			Scuuy

数据类型	轨道号	飞行方向	影像对
Sentinel-1A	128	升轨	20231027-20231226
Sentinel-1A	135	降轨	20231214-20231226

2 震源破裂过程反演

由于此次地震并未破裂至地表,因此无

法根据同震形变场直接确定发震断层迹线。 为了确定本次地震发震断层的几何参数和 空间位置,本文使用 GBIS 软件对断层的几 何参数和位置进行非线性搜索^[37]。剪切模量 和泊松比分别设置为 3.0 GPa 和 0.25。为 了更好地搜索断层参数,本文对所有参数进 行自由搜索,与其他研究不同的是,本文并 未对断层的走向角进行约束,而是进行 0° ~360°的全局搜索。经过 100 万次反演后, 去掉前 10 万次处于预烧期的采样结果。统 计分布表明(表 3),发震断层长度~12.96 km (12.90~13.03 km, 95%置信区间,下同), 宽度~7.96 km (7.85~8.09 km),走向角和 倾角分别为 325.2°(324.8°~325.5°)和 32.2°(31.7°~32.7°),断层向北东倾。 断层顶深为 5.54 km,说明同震破裂并未到 达地表,与地质调查结果相符。断层面滑动 量以逆冲分量为主,并伴有少量的右旋走滑 分量。从各参数的联合概率密度函数分布中 可以看出(图 2),各参数接近正态分布,且 两两参数之间相关性较小,证明了反演结果 的稳定性和参数独立性。

表3 东倾发震断层几何参数

Tab. 3	Geometric	parameters	of	east	dipping	fault	model
--------	-----------	------------	----	------	---------	-------	-------

模型	长度	宽度	顶深	倾角/	走向角/	断层	断层	走滑分	倾滑分
参数	/km	/km	/km	(°)	(°)	X/km	Y/km	量/m	量/m
最优值	12.96	7.96	5.54	32.2	325.2	-6.48	2.87	0.10	-0.249
2.5%	12.90	7.85	5.48	31.7	324.8	-6.51	2.81	0.09	-0.253
97.5%	13.03	8.09	5.60	32.7	325.5	-6.45	2.91	0.11	-0.244

注:走滑分量正值代表右旋,负值代表左旋;倾滑分量正值代表正断,负值代表逆冲;断层 X 和 Y 表示断层 上边界中点与参考点的偏离。

Fig.2 Posterior probability density distribution of fault geometric parameters

确定断层的几何参数和位置后,本文将 断层面沿走向和倾向方向扩展到40 km×40 km,将其按照2 km×2 km的矩形划分为400 个子断层,然后使用多时间窗函数线性波形 反演方法联合反演 InSAR 同震形变场和远场 体波数据获得震源破裂过程^[38-41]。基于本次 地震由逆冲主导的特征,将每个子断层滑动 方向的范围限定为90°±45°,得到的最优 反演结果如图3所示。

图 3 同震滑动分布模型

Fig. 3 Coseismic slip model

反演结果表明,本次积石山地震的断层 滑动分布以逆冲为主,兼具少量右旋分量, 主要集中在5~20 km 处,未破裂至地表; 最大滑动量达~0.2 m,位于~13 km 处。滑动 分布正演结果显示(图4),波形数据基本全 部拟合, InSAR 数据在主要形变区还残留少 量残差,这可能是由于形变场近场失相干, 存在一定的解缠误差及早期震后形变造成 的。升降轨对应残差的均方根分别为 5.91 mm 和 5.36 mm,均小于 InSAR 观测值一个数 量级,说明了反演结果的可靠性。

从震源破裂过程可以看出(图5),破裂 从断层面10km到15km深度开始破裂,呈 圆盘状像四周破裂,整体主要向深处破裂, 在5s时,矩张量释放达到最大值,之后逐 步减小。在破裂结束前2s,破裂以圆盘状 向外扩展,之后受限于浅部地质构造,破裂 演化为不规则破裂。 3 讨论

3.1 积石山地震发震构造和区域地震风险

本文联合 InSAR 观测和地震波数据确定 了积石山 Ms 6.2 地震的发震断层参数和破 裂过程。本次地震的 InSAR 同震形变场正好 位于拉脊山北缘断裂和南缘断裂的中部,因 此无法直接从形变场判别发震断层。基于贝 叶斯均一滑动反演结果表明,积石山地震的 发震断层为北东倾向,与前人根据余震空间 破裂特征、InSAR 同震形变场失相干区空间 分布和同震触发滑坡的空间展布等因素得 到的断层倾向相同^[6-7],因此本文认为本次 地震的发震构造为倾向北东的拉脊山南缘 断裂。本次地震是一个典型的逆冲事件,地 震波约束的破裂过程较为简单,同震滑动集 中在5 km 至 20 km 处,最大滑动量达~0.2 m, 位于~13 km 处, 余震分布主要集中于断 层面下方。

地震所导致灾害的严重性与地震所引 起的地表峰值加速度、地表峰值速度和地表 峰值位移紧密相关。为了探究 2023 年积石 山 Ms 6.2 地震的地表地震动分布,本文使 用基于北东倾向断层的最优滑动分布正演 获得积石山地震的以0.2 s 为时间间隔的地 表位移时间序列。通过对位移时间序列进行 一次求导和两次求导可以得到速度时间序 列和加速度时间序列。如图6所示,基于北 东倾向断层的最优滑动分布正演得到的 PGA(峰值地面加速度)分布和 PGV(峰值地面 速度)分布与基于 InSAR 数据得到的地表位 移场具有较好的一致性,与 USGS 发布的 PGA 分布、PGV 分布的一阶特征基本相似 (https://earthquake.usgs.gov/earthqu akes/eventpage/us70001jvg/shakemap/), 表明本文计算的结果具有较高的可靠性,并 且本文的结果具有更加详细的特征,但是由 于正演的频率范围有限,得到的 PGA 和 PGV 的值不具有物理意义,但是可以表示相对强 度变化。本次积石山地震的影响范围较大, 较高的 PGA、PGV 基本分布在震中附近,与

PGA的影响范围相比,PGV的影响区域更大, 这可能与浅层岩石的性质与厚度相关。2023 年积石山地震震中附近有多个人口聚集区, 包括积石山县、官亭镇、吹麻滩镇及其下属 乡村,由于本次地震引起了较强的地面加速 度运动,加上房屋结构抗震性较弱,导致了 严重的人员伤亡和财产损失。2023年积石山 地震诱发大量滑坡,前人基于光学卫星影像 解译得到同震滑坡 3767 处,多为小型的黄 土滑坡^[2]。滑坡的空间位置与本文根据最优 滑动模型计算的 PGA、PGV 分布具有很好的 一致性,这表明由地震的引起的地震动是诱 发同震滑坡的重要因素之一^[2]。沟壑两侧的 黄土可能经过较大的加速度运动后变得松 散,在重力作用下发生失稳从而发生滑坡。

图 4 数据模型残差图

Fig. 4 Coseismic observation, model and residuals

Fig. 6 PGA map and PGV map

3.2 积石山 Ms6.2 级地震对祁连山内部构造 转换的启示

同震形变场和震源机制显示 2023 年积 石山 Ms 6.2 地震为一次典型的挤压型地震 事件,主压应力轴方向为 NEE 向 (N60°~80°E)
(表
1) (www.ninhm.ac.cn/content/details_10
4_4376.html),与祁连山 NNE 向的整体挤压 方向存在一定的角度偏差^[19,20]。祁连山主构 造线方向为 N60°~70°W, 主要由一系列 NWW 向近平行的条带状挤压山脉、盆地和褶 皱断裂带组成, 它们的走向大致与印度-欧 亚大陆碰撞的方向垂直(N~20°E), 说明发 生在祁连山地区的挤压构造主要受到板块 边界陆-陆碰撞远程效应的影响^[10,19]。但是, 本次积石山地震的主压应力轴与祁连山整 体上的挤压应力方向存在 30°~40°的偏差, 说明此次事件的驱动机制可能不是近南北 向的挤压, 而是其他的构造形式。

本文反演的断层滑动分布模型显示 2023年积石山 Ms 6.2级地震位于拉脊山断 裂的东段。拉脊山断裂走向在其中部发生 ~30°的偏转,由西段的 NWW 向扭转为东段 的 NNW 向^[42]。积石山地震的变形方式和震源 参数与拉脊山断裂东段的断层几何基本相 符。虽然拉脊山断裂东段的断层几何与祁连 山整体的挤压主构造线方向不合,但其西段 却与区域内主构造线基本一致。地质学和活 动断裂研究认为青海南山断裂和拉脊山断 裂西段以逆冲运动为主,并伴随少量的左旋 走滑分量[11,21-25,27,43-44]。根据祁连山地区 2009-2021 年的 3.5 级以上地震机制,有两 次 M4+地震位于青海南山断裂和拉脊山断裂 西段,并且这两个地震均显示青海南山断 裂和拉脊山断裂西段存在显著的左旋走滑 活动^[18,45]。

邻近拉脊山断裂有3条规模较大的活动 断裂,分别为NWW 走向的青海南山断裂和西 秦岭断裂,以及 NNW 走向的日月山断裂。日 月山断裂以右旋走滑活动为特点, 西秦岭断 裂以左旋走滑为主兼具一定程度的逆冲分 量^[11, 26, 44]。青海南山断裂、拉脊山断裂西段 和西秦岭断裂不仅断裂的几何结构相似,断 裂的滑动行为也极为相似。如果将青海南山 断裂和拉脊山断裂西段视为同一断层系统, 那么该断裂带东端和西秦岭断裂西段存在 50~80 km 阶区,该阶区正好位于拉脊山断 裂东段,也是本次积石山 Ms 6.2级地震的 发震位置。根据断层几何分类和运动学特征, 在左行左阶的阶区部位会形成张性破裂或 者张性正断层,而在左行右阶断裂的阶区部 位会形成挤压破裂或者压性逆断层^[46-47]。考 虑到青海南山断裂、拉脊山断裂和西秦岭断

裂的空间分布和运动学特征, 左行右阶型的 挤压阶区构造与拉脊山断裂东段变形方式 相符。走滑断裂之间的阶区部位往往是构造 应力容易集中的地方, 断层滑动更容易在构 造几何的扭曲部位闭锁,有利于地震成核和 孕育^[46]。同时,阶区构造的规模大小与其所 能积累的弹性势能正相关,统计显示尺度超 过5 km的阶区能够有效中止破裂的传递, 促进地震成核^[46]。本次积石山 Ms 6.2 级地 震所在的拉脊山断裂东段不仅在构造样式 上与阶区构造相符,而且巨大的阶区尺度使 其具有较大发震潜能。因此,本次积石山地 震很可能发生在东祁连山内部两条大型活 动断裂之间的构造转换部位, 拉脊山断裂东 段是协调青海南山断裂-拉脊山断裂西段和 西秦岭断裂左旋走滑作用的阶区构造。

虽然本次积石山 Ms 6.2级地震发生祁 连山内部一条次级断裂(拉脊山断裂东段) 上,但地震强度高,受灾程度重。近 20 年 的地震记录显示,东祁连山的地震活动相对 集中,主要分布在海原断裂、鄂拉山断裂、 西秦岭断裂和东昆仑断裂等块体边界断裂 带上,块体内部的地震活动较弱(图1(a)) ^[18-19,48]。本次积石山地震打破了这种认识, 说明青藏高原东北缘地震活动的复杂性。此 外,临夏地区为中国西部的黄土覆盖区,该 区域地形沟壑纵横,水土流失严重,受外力 扰动极易发生滑坡、崩塌等地质灾害^[1-2]。因 此,在地震危险性评价工作中,除了考虑地 下构造对地震强度的控制作用外,地表场地 条件也是评估地震危险性不可忽视的因素。

4 结 语

本文联合 InSAR 和地震波数据反演了 2023 年甘肃省积石山县地震的断层几何参 数、同震滑动分布及其破裂过程。反演结果 显示,此次地震发生在一条 32.2°北东倾向、 325.2°北西走向的断层上,同震滑动分布 主要集中在深度 5.0~20.0 km 的范围内。在 深度 13 km 处滑动量最大,为 0.2 m,同震 滑动产生了 1.3×10¹⁸ N·m 的矩张量,相当 于矩震级 Mw 6.0。基于贝叶斯反演结果及区 域构造,我们认为此次地震破裂在东北倾的 拉脊山南缘断裂上,结合邻区主要活动断裂 的断层几何和运动学特征,认为本次积石山 地震所在的拉脊山断裂东段可能是青海南 山断裂、拉脊山断裂西段和西秦岭断裂的阶 区转换构造,该阶区的左行右阶型挤压作用 为本次逆冲型地震事件的驱动机制。本文强 调断层几何的不连续性和区域场地条件在 地震危险性评价中的重要性。

致谢:感谢中国地震局地球物理研究所房立 华研究员提供的余震精定位数据,欧洲航天局提 供的哨兵 1A 数据

(https://asf.alaska.edu/), 以及 IRIS 数据 管理机构提供的远震数据;感谢长安大学李振洪 老师提供的滑坡点位数据。活动断裂数据来自 www.activefault-datacenter.cn/map。本文中大 部分图采用 GMT 绘制^[49]。

参考文献

- [1] Wang Yunsheng, Zhao Bo, Ji Feng, et al. Preliminary Insights into the Hazards Triggered by the 2023 Jishishan Ms 6.2 Earthquake in Gansu Province[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(1): 1-8. (王运生,赵波,吉锋,等. 2023 年甘 肃积石山 Ms6.2 级地震震害异常的启示[J]. 成 都理工大学学报(自然科学版), 2024, 51(1): 1-8.)
- [2] Chen Bo, Song Chuang, Chen Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/J.whugis20230497.(陈博, 宋闯, 陈毅,等. 2023 年甘肃积石山 Ms 6.2 地震同震 滑坡和建筑物损毁情况应急识别与影响因素 研究[J]. 武汉大学学报(信息科学版), 2024, DOI: 10.13203/J.whugis20230497.)
- [3] Ni Ruisheng, Xu Wenbin. Codefmap APP: A Seismic Deformation Simulation Application Based on Android System[J]. *Reviews of Geophysics and Planetary Physics*, 2023, 54(6): 622-632. (倪瑞胜, 许文斌. 震形图 APP: 一种基于 Android 系统的地震形变模拟应用程序[J]. 地球与行星物理论评(中英文), 2023, 54(6): 622-632.)

- [4] Li S W, Xu W B, Li Z W. Review of the SBAS InSAR Time-series Algorithms, Applications, and Challenges[J]. *Geodesy and Geodynamics*, 2022, 13(2): 114-126.
- [5] Liu H Z, Xie L, Zhao G Q, et al. A Joint InSAR-GNSS Workflow for Correction and Selection of Interferograms to Estimate High-resolution Interseismic Deformations[J]. Satellite Navigation, 2023, 4(1): 14.
- [6] Yang Jiuyuan, Wen Yangmao, Xu Caijun. Seismogenic Fault Structure of the 2023 Jishishan (Gansu) MS 6.2 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024.(杨九元,温 扬茂,许才军. InSAR 观测揭示的 2023 年甘肃 积石山 Ms 6.2 地震发震构造[J]. 武汉大学学报 (信息科学版), 2024.)
- [7] Liu Zhenjiang, Han Bingquan, Nai Yihan, et al. Source Parameters and Slip Distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) Earthquake Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024.(刘振江, 韩 炳权, 能懿菡,等. InSAR 观测约束下的 2023 年甘肃积石山地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2024.)
- [8] Tapponnier P, Meyer B, Avouac J P, et al. Active Thrusting and Folding in the Qilian Shan, and Decoupling Between Upper Crust and Mantle in Northeastern Tibet[J]. *Earth and Planetary Science Letters*, 1990, 97(3): 382.
- [9] Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
- [10] Wang Q, Zhang P Z, Freymueller J T, et al. Present-day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. *Science*, 2001, 294(5542): 574-577.
- [11] Yuan Daoyang, Zhang Peizhen, Liu Baichi, et al. Geometrical Imagery and Tectonic Transformation of Late Quaternary Active Tectonics in Northeastern Margin of Qinghai 栖 izang Plateau[J]. Acta Geologica Sinica, 2004,

78(2): 270-278. (袁道阳,张培震,刘百篪,等. 青藏高原东北缘晚第四纪活动构造的几何图 像与构造转换[J]. 地质学报, 2004, 78(2): 270-278.)

- [12] Yuan D Y, Ge W P, Chen Z W, et al. The Growth of Northeastern Tibet and Its Relevance to Largescale Continental Geodynamics: A Review of Recent Studies[J]. *Tectonics*, 2013, 32(5): 1358-1370.
- [13] Zheng W J, Zhang P Z, He W G, et al. Transformation of Displacement Between Strikeslip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults[J]. *Tectonophysics*, 2013, 584: 267-280.
- [14] Li Y H, Liu M, Wang Q L, et al. Present-day Crustal Deformation and Strain Transfer in Northeastern Tibetan Plateau[J]. *Earth and Planetary Science Letters*, 2018, 487: 179-189.
- [15] Xu Huachao, Wang Hui, Cao Jianling. Slip Rates of the Major Faults in the Northeastern Tibetan Plateau and Their Geodynamic Implications[J]. *Earthquake*, 2018, 38(3): 13-23. (徐化超, 王辉, 曹建玲. 青藏高原东北缘主要断裂滑动速率及 其动力学意义[J]. 地震, 2018, 38(3): 13-23.)
- [16] Pan Z Y, Yun Z, Shao Z G. Contemporary Crustal Deformation of Northeast Tibet from Geodetic Investigations and a Comparison Between the Seismic and Geodetic Moment Release Rates[J]. *Physics of the Earth and Planetary Interiors*, 2020, 304: 106489.
- [17] Pan Z Y, He J K, Shao Z G. Spatial Variation in the Present-day Stress Field and Tectonic Regime of Northeast Tibet from Moment Tensor Solutions of Local Earthquake Data[J]. *Geophysical Journal International*, 2020, 221(1): 478-491.
- [18] Chen Z D, Koronovskii N V, Zaitsev V A, et al. Active Tectonic Deformation of the Qilian Shan, Northeastern Tibetan Plateau[J]. Russian Geology and Geophysics, 2024, DOI:10.2113/RGG20234637.
- [19] Zhang P Z, Shen Z K, Wang M, et al. Continuous Deformation of the Tibetan Plateau from Global

Positioning System Data[J]. *Geology*, 2004, 32(9): 809.

- [20] Chen Z D, Xu W B, Liu R, et al. Tectonic Deformation of the Western Qilian Shan in Response to the North–South Crustal Shortening and Sinistral Strike-slip of the Altyn Tagh Fault Inferred from Geomorphologic Data[J]. Frontiers in Earth Science, 2022, 10: 808935.
- [21] Wang E, Shi X H, Wang G, et al. Structural Control on the Topography of the Laji–Jishi and Riyue Shan Belts in the NE Margin of the Tibetan Plateau: Facilitation of the Headward Propagation of the Yellow River System[J]. *Journal of Asian Earth Sciences*, 2011, 40(4): 1002-1014.
- [22] Yuan Daoyang, Zhang Peizhen, Lei Zhongsheng, et al. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province[J]. *Earthquake Research In China*, 2005, 21(1): 93-102. (袁道阳,张培震, 雷中生,等. 青海拉脊山断裂带新活动特征的 初步研究[J]. 中国地震, 2005, 21(1): 93-102.)
- [23] Li Zhimin, Li Yanjing, Tian Qinjian, et al. Study on the Relationship Between the Ancient Earthquake of Lajishan Fault and the Catastrophic Event of Lajia Site[J]. Journal of Seismological Research, 2014, 37(S1): 109-115. (李智敏, 李延 京,田勤俭,等. 拉脊山断裂古地震与喇家遗 址 灾变事件关系研究[J]. 地震研究, 2014, 37(S1): 109-115.)
- [24] Li Zhimin, Tian Qinjian, Tu Hongwei. Remote Sensing Characteristics of Lajishan Fault[J]. *Plateau Earthquake Research*, 2009, 21(1): 26-31.
 (李智敏, 田勤俭, 屠泓为. 拉脊山断裂带遥感 特征研究[J]. 高原地震, 2009, 21(1): 26-31.)
- [25]Wang Erqi, Zhang Qi, Clark B Burchfiel. The Lajishan Fault Belt in Qinghai Province: A multistaged Uplifting Structural Window[J]. *Scientia Geologica Sinica*, 2000, 35(4): 493-500. (王二七, 张旗, Clark B.Burchfiel. 青海拉鸡山: 一个多 阶段抬升的构造窗[J]. 地质科学, 2000, 35(4): 493-500.)
- [26] Zhang Bo. The Study of New Activities on Western Segment of Northern Margin of Western Qinling Fault and Laji Shan Fault[D].Lanzhou:

China Earthquake Administration Lanzhou Institute of Seismology, 2012. (张波. 西秦岭北 缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州:中国地震局兰州地震研究所, 2012.)

- [27] Zhou Lin, Wang Qingliang, Li Changjun, et al. The Study of Crustal Deformation on Western End of Lajishan Fault Based on GPS and Leveling Data[J]. Journal of Geodesy and Geodynamics, 2016, 36(12): 1056-1059. (周琳, 王庆良, 李长 军, 等. 基于 GPS 和水准资料的拉脊山断裂带 西段地壳形变研究[J]. 大地测量与地球动力学, 2016, 36(12): 1056-1059.)
- [28] Li X N, Pierce I K D, Bormann J M, et al. Tectonic Deformation of the Northeastern Tibetan Plateau and Its Surroundings Revealed with GPS Block Modeling[J]. *Journal of Geophysical Research: Solid Earth*, 2021, 126(5).
- [29] Wald D J, Heaton T H, Hudnut K W. The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-motion, Teleseismic, GPS, and Leveling Data[J]. Bulletin of the Seismological Society of America, 1996, 86(1B): S49-S70.
- [30] Qian Y Y, Ni S D, Wei S J, et al. The Effects of Core-reflected Waves on Finite Fault Inversions with Teleseismic Body Wave Data[J]. *Geophysical Journal International*, 2017, 211(2): 936-951.
- [31] Laske G, Masters G, Ma Z, et al. Update on CRUST1. 0—A 1-degree global model of Earth's crust[C]. Geophysical research abstracts, 2013.
- [32] Kennett B L N, Engdahl E R, Buland R. Constraints on Seismic Velocities in the Earth from Traveltimes[J]. *Geophysical Journal International*, 1995, 122(1): 108-124.
- [33] Farr T G, Rosen P A, Caro E, et al. The Shuttle Radar Topography Mission[J]. *Reviews of Geophysics*, 2007, 45(2).
- [34] Jonsson S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. *The Bulletin of the Seismological Society of America*, 2002, 92(4): 1377-1389.

- [35] Zhu L P, Rivera L A. A Note on the Dynamic and Static Displacements from a Point Source in Multilayered Media[J]. *Geophysical Journal International*, 2002, 148(3): 619-627.
- [36] Shen W S, Ritzwoller M H, Kang D, et al. A Seismic Reference Model for the Crust and Uppermost Mantle Beneath China from Surface Wave Dispersion[J]. *Geophysical Journal International*, 2016, 206(2): 954-979.
- [37] Bagnardi M, Hooper A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach[J]. *Geochemistry*, *Geophysics*, *Geosystems*, 2018, 19(7): 2194-2211.
- [38] Sekiguchi H. Fault Geometry at the Rupture Termination of the 1995 Hyogo-ken Nanbu Earthquake[J]. Bulletin of the Seismological Society of America, 2000, 90(1): 117-133.
- [39] Hartzell S H, Heaton T H. Inversion of Strong Ground Motion and Teleseismic Waveform Data for the Fault Rupture History of the 1979 Imperial Valley, California, Earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73(6A): 1553-1583.
- [40] Olson A H, Apsel R J. Finite Faults and Inverse Theory with Applications to the 1979 Imperial Valley Earthquake[J]. *The Bulletin of the Seismological Society of America*, 1982, 72(6A): 1969-2001.
- [41] Zheng A, Yu X W, Xu W B, et al. A Hybrid Source Mechanism of the 2017 Mw 6.5 Jiuzhaigou Earthquake Revealed by the Joint Inversion of Strong-motion, Teleseismic and InSAR Data[J]. *Tectonophysics*, 2020, 789: 228538.
- [42] Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Basic characteristics of active tectonics of China[J]. Science in China (Series D), 2003, 46(4):356-372.(邓起东,张培震,冉勇康,等. 中国活动构造基本特征[J]. 中国科学(D), 2002, 32(12):1020-1030.)
- [43] Zheng D W, Zhang P Z, Wan J L, et al. Late Cenozoic Deformation Subsequence in Northeastern Margin of Tibet—Detrital AFT Records from Linxia Basin[J]. Science in China

Series D Earth Sciences, 2003, 46(S2): 266-275.

- [44] Yuan D Y, Champagnac J D, Ge W P, et al. Late Quaternary Right-lateral Slip Rates of Faults Adjacent to the Lake Qinghai, Northeastern Margin of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2011, 123(9/10): 2016-2030.
- [45] Guo Xiangyun, Jiang Changsheng, Han Libo, et al. Focal mechanism data set in Chinese mainland and its adjacent area(2009-2021)[EB/OL]. https://data.earthquake.cn, 2022.(郭祥云, 蒋长 胜, 韩立波,等. 中国大陆及邻区震源机制数 据集(2009-2021年)[EB/OL]. https://data.earthquake.cn, 2022.)
- [46] Deng Qidong, Zhu Ailan, Gao Xiang. Reevaluation of Seismogenic and Occurrence Conditions of Large Earthquakes on strike-slip Faults[J]. Seismology and Geology, 2014, 36(3): 562-573. (邓起东,朱艾斓,高翔. 再议走滑断 裂与地震孕育和发生条件[J]. 地震地质, 2014, 36(3): 562-573.)
- [47] Acocella V. Volcano-tectonic Processes[M]. Cham: Springer, 2021.
- [48] Wang Y Z, Wang M, Shen Z K. Block-like Versus Distributed Crustal Deformation Around the Northeastern Tibetan Plateau[J]. *Journal of Asian Earth Sciences*, 2017, 140: 31-47.
- [49] Wessel P, Luis J F, Uieda L, et al. The Generic Mapping Tools Version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.