留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

COVID-19期间中国区域AOD与气象因子时空特征分析

赵庆志 杨鹏飞 李祖锋 姚顽强 姚宜斌

赵庆志, 杨鹏飞, 李祖锋, 姚顽强, 姚宜斌. COVID-19期间中国区域AOD与气象因子时空特征分析[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210209
引用本文: 赵庆志, 杨鹏飞, 李祖锋, 姚顽强, 姚宜斌. COVID-19期间中国区域AOD与气象因子时空特征分析[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210209
ZHAO Qingzhi, YANG Pengfei, LI Zufeng, YAO Wanqiang, YAO Yibin. Spatial and temporal characteristics of AOD and meteorological factors in China during the period of COVID-19[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210209
Citation: ZHAO Qingzhi, YANG Pengfei, LI Zufeng, YAO Wanqiang, YAO Yibin. Spatial and temporal characteristics of AOD and meteorological factors in China during the period of COVID-19[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210209

COVID-19期间中国区域AOD与气象因子时空特征分析

doi: 10.13203/j.whugis20210209
基金项目: 

国家自然科学基金青年项目(41904036)。

详细信息
    作者简介:

    赵庆志,博士,副教授,主要从事GNSS空间环境与气候变化相关研究。zhaoqingzhia@163.com

  • 中图分类号: P208

Spatial and temporal characteristics of AOD and meteorological factors in China during the period of COVID-19

Funds: 

This paper is supported by National Natural Science Foundation of China (41904036).

  • 摘要: 为了探究新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19)期间人类活动减少对我国空气质量影响,分析了气溶胶光学厚度(Aerosol Optical Depth,AOD)、大气可降水量(Precipitable Water Vapor,PWV)和气温(Temperature,T)的时空异常变化,揭示了人类活动对空气质量的影响。首先,与全球自动观测网(Aerosol Robotic Network,AERONET)提供的AOD和无线电探空仪提供的PWV和T数据对比,验证使用的AOD、PWV和T的精度。然后,分析周末与周内期间AOD、PWV和T的长时序变化趋势,发现人类活动对空气质量有一定影响。其次,研究COVID-19期间AOD、PWV和T的时空变化,证实人类活动与空气质量有较好的相关性。最后,选取中国184个不同等级的城市进一步分析,确定人口密度对AOD、PWV和T的影响程度,进一步揭示了人类活动与空气质量的具体响应关系。
  • [1] Zhang K, de Leeuw G, Yang Z, et al. The Impacts of the COVID-19 Lockdown on Air Quality in the Guanzhong Basin, China[J]. Remote Sensing, 2020, 12(18):3042.
    [2] Guo J P, Xia F, Zhang Y, et al. Impact of Diurnal Variability and Meteorological Factors on the PM2.5-AOD Relationship:Implications for PM2.5 Remote sensing[J]. Environmental Pollution, 2017, 221:94-104.
    [3] Zheng Y, Che H Z, Xia X G, et al. Five-year Observation of Aerosol Optical Properties and its Radiative Effects to Planetary Boundary Layer During Air Pollution Episodes in North China:Intercomparison of a Plain Site and a Mountainous Site in Beijing[J]. Science of The Total Environment, 2019, 674:140-158.
    [4] Sarangi C, Tripathi S N, Kanawade V P, et al. Investigation of the Aerosol-Cloud-Rainfall Association Over the Indian Summer Monsoon Region[J]. Atmospheric Chemistry and Physics, 2017, 17(8):5185-5204.
    [5] Li Z Q, Guo J P, Ding A J, et al. Aerosol and Boundary-layer Interactions and Impact on Air Quality[J]. National Science Review, 2017, 4(6):810-833.
    [6] Von Schneidemesser E, Monks P S, Allan J D, et al. Chemistry and the Linkages Between Air Quality and Climate Change[J]. Chemical reviews, 2015, 115(10):3856-3897.
    [7] Kong L, Tang X, Zhu J, et al. A 6-Year-Long (2013-2018) High-resolution Air Quality Reanalysis Dataset in China Based on the Assimilation of Surface Observations from CNEMC[J]. Earth System Science Data, 2021, 13(2):529-570.
    [8] Che H., Gui K., Xia X., et al. Large Contribution of Meteorological Factors to Inter-decadal Changes in Regional Aerosol Optical Depth[J]. Atmospheric Chemistry and Physics, 2019, 19(16):10497-10523.
    [9] Bevis M, Businger S, Herring T A, et al. GPS Meteorology:Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801.
    [10] Xu J, Ge X, Zhang X, et al. COVID-19 Impact on the Concentration and Composition of Submicron Particulate Matter in a Typical City of Northwest China[J]. Geophysical research letters, 2020, 47(19):e2020GL089035.
    [11] Yang Y, Ren L, Li H, et al. Fast Climate Responses to Aerosol Emission Reductions During the COVID-19 Pandemic[J]. Geophysical Research Letters, 2020, 47(19):e2020GL089788.
    [12] Yang Y, Smith S J, Wang H, et al. Variability, Timescales, and Nonlinearity in Climate Responses to Black Carbon Emissions[J]. Atmospheric Chemistry and Physics, 2019, 19(4):2405-2420.
    [13] Le T, Wang Y, Liu L, et al. Unexpected Air Pollution With Marked Emission Reductions During the COVID-19 Outbreak in China[J]. Science, 2020, 369(6504):702-706.
    [14] Huang X, Ding A, Gao J, et al. Enhanced Secondary Pollution Offset Reduction of Primary Emissions During COVID-19 Lockdown in China[J]. National Science Review, 2020, 8(2):nwaa137.
    [15] Nichol J E, Bilal M, Ali M, et al. Air Pollution Scenario Over China During COVID-19[J]. Remote Sensing, 2020, 12(13):2100.
    [16] Filonchyk M, Hurynovich V, Yan H, et al. Impact Assessment of COVID-19 on Variations of SO2, NO2, CO and AOD over East China[J]. Aerosol and Air Quality Research, 2020, 20(7):1530-1540.
    [17] Ding J S, Chen J P. Assessment of Empirical Troposphere Model GPT3 Based on NGL's Global Troposphere Products[J]. Sensors, 2020, 20(13):3631.
    [18] Saastamoinen J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites[J]. The use of artificial satellites for geodesy, 1972, 15:247-251.
    [19] Huang L, Liu L, Chen H, et al. An Improved Atmospheric Weighted Mean Temperature Model and its Impact on GNSS Precipitable Water Vapor Estimates for China[J]. GPS Solutions, 2019, 23(2):51.
    [20] Sun E, Xu X, Che H, et al. Variation in MERRA-2 Aerosol Optical Depth and Absorption Aerosol Optical Depth over China from 1980 to 2017[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 186:8-19.
    [21] Green M, Kondragunta S, Ciren P, et al. Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 Mass at Bondville, Illinois[J]. Journal of the Air & Waste Management Association, 2009, 59(9):1082-1091.
    [22] Ukhov A, Mostamandi S, da Silva A, et al. Assessment of Natural and Anthropogenic Aerosol Qir Pollution in the Middle East Using MERRA-2, CAMS Data Assimilation Products, and High-Resolution WRF-Chem model Simulations[J]. Atmospheric Chemistry and Physics, 2020, 20(15):9281-9310.
    [23] Zhang Q, Ye J, Zhang S, et al. Precipitable Water Vapor Retrieval and Analysis by Multiple Data Sources:Ground-based GNSS, Radio Occultation, Radiosonde, Microwave Satellite, and NWP Reanalysis Data[J]. Journal of Sensors, 2018, 2018.
    [24] Tatem A J. WorldPop, Open Data for Spatial Demography[J]. Scientific data, 2017, 4(1):1-4.
    [25] Jiang C, Xu T, Wang S, et al. Evaluation of Zenith Tropospheric Delay Derived from ERA5 Data over China Using GNSS Observations[J]. Remote Sensing, 2020, 12(4):663.
    [26] Aliyu Y A, Botai J O. Appraising the Effects of Atmospheric Aerosols and Ground Particulates Concentrations on GPS-derived PWV Estimates[J]. Atmospheric Environment, 2018, 193:24-32.
    [27] Klos A, Hunegnaw A, Teferle F N, et al. Statistical Significance of Trends in Zenith Wet Delay from re-processed GPS solutions[J]. GPS Solutions, 2018, 22(2):51.
    [28] Zhao Q, Ma X, Yao W, et al. A Drought Monitoring Method Based on Precipitable Water Vapor and Precipitation[J]. Journal of Climate, 2020, 33(24):10727-10741.
    [29] Nikolaidis R. Observation of Geodetic and Seismic Deformation With the Global Positioning System[M]. University of California, San Diego, 2002.
    [30] Xia XG, Eck T F, Holben B N, et al. Analysis of the Weekly Cycle of Aerosol Optical Depth Using AERONET and MODIS Data[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D14).
    [31] Lu X. Effectiveness of Government Enforcement in Driving restrictions:A Case in Beijing, China[J]. Environmental Economics and Policy Studies, 2016, 18(1):63-92.
    [32] Chen J, Wang B, Huang S, et al. The Influence of Increased Population Density in China on Air Pollution[J]. Science of The Total Environment, 2020, 735:139456.
    [33] Xiao Q, Ma Z, Li S, et al. The Impact of Winter Heating on Air Pollution in China[J]. PloS one, 2015, 10(1):e0117311.
    [34] Chen X, Lv Y, Zhang W, et al. Comparison Between Dust and Haze Aerosol Properties of the 2015 Spring in Beijing Using ground-based Sun Photometer and Lidar[C]//AOPC 2015:Optical and Optoelectronic Sensing and Imaging Technology. International Society for Optics and Photonics, 2015, 9674:96740O.
    [35] Mishra A K. Quantifying the Impact of Global Warming on Precipitation Patterns in India[J]. Meteorological Applications, 2019, 26(1):153-160.
    [36] Xu J, Li C, Shi H, et al. Analysis on the Impact of Aerosol Optical Depth on Surface Solar Radiation in the Shanghai Megacity, China[J]. Atmospheric Chemistry & Physics Discussions, 2011, 11(1).11
    [37] Miao Y, Liu S, Zheng Y, et al. Modeling the Feedback Between Aerosol and Boundary Layer Processes:A Case Study in Beijing, China[J]. Environmental Science and Pollution Research, 2016, 23(4):3342-3357.
    [38] Miao Y, Guo J, Liu S, et al. Classification of Summertime Synoptic Patterns in Beijing and their Associations with Boundary Layer Structure Affecting Aerosol Pollution[J]. Atmospheric Chemistry and Physics, 2017, 17(4):3097-3110.
    [39] Ma Y, Zhao Y, Liu J, et al. Effects of Temperature Variation and Humidity on the Death of COVID-19 in Wuhan, China[J]. Science of the total environment, 2020, 724:138226.
    [40] Fan C, Li Y, Guang J, et al. The Impact of the Control Measures During the COVID-19 Outbreak on Air Pollution in China[J]. Remote Sensing, 2020, 12(10):1613.
  • [1] 俞艳, 蒙文清, 樊建, 马薇霖, 夏杨玲.  经济空间场与ESDA结合的公共卫生事件应急策略制定 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200408
    [2] 冯明翔, 方志祥, 路雄博, 谢泽丰, 熊盛武, 郑猛, 黄守倩.  交通分析区尺度上的COVID-19时空扩散推估方法:以武汉市为例 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200141
    [3] 陈晓慧, 刘俊楠, 徐立, 李佳, 张伟, 刘海砚.  COVID-19病例活动知识图谱构建——以郑州市为例 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200201
    [4] 李欣, 周林, 贾涛, 吴昊, 邹宇量, 秦昆.  城市因素对COVID-19疫情的影响——以武汉市为例 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200152
    [5] 张新, 林晖, 朱长明, 王劲峰, 李满春, 徐成东, 胡茂桂, 孟斌, 曹春香.  COVID-19疫情早期中国确诊时间的时空特征及动态过程分析 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200255
    [6] 张李盈, 李东宸, 任景莉.  多阶段动态时滞动力学模型的COVID-19传播分析 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200206
    [7] 张新, 林晖, 王劲峰, 徐成东, 胡茂桂, 孟斌, 刘冬林, 徐敏, 朱长明, 王刚, 曹春香, 骆剑承, 肖桂荣, 卢毅敏, 杨宇, 智国庆.  中国数字化公共卫生应急管理体系建设的科技策略建议 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200151
    [8] 彭明军, 李宗华, 刘辉, 孟成, 李勇.  基于中文分词的加权地理编码在COVID-19疫情防控空间定位中的应用 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200212
    [9] 应申, 徐雅洁, 窦小影, 陈学业, 赵军, 郭晗.  地理位置关联的COVID-19传播时空分析 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200241
    [10] 方新, 邹滨, 刘宁.  不确定性约束下的AOD空间覆盖STRE建模优化 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20180271
    [11] 沈维青, 张丰, 刘仁义, 杜震洪.  利用SARA结合高分一号数据反演气溶胶光学厚度 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20190034
    [12] 韩波, 李衡, 王志波, 崔晓晖.  气溶胶光学厚度估测中的LASSO特征选择方法 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20160014
    [13] 施闯, 王海深, 曹云昌, 张恩红, 梁宏, 付志康.  基于北斗卫星的水汽探测性能分析 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20140944
    [14] 王华, 郭阳洁, 洪松, 牛蓓蓓.  区域气溶胶光学厚度空间格局特征研究 . 武汉大学学报 ● 信息科学版,
    [15] 范士杰, 刘焱雄, 王振杰.  日本3·11特大地震的GPS震时和震后响应 . 武汉大学学报 ● 信息科学版,
    [16] 朱忠敏, 余娟, 龚威.  Peterson模型的参数选择及优化 . 武汉大学学报 ● 信息科学版,
    [17] 许超钤, 史俊波, 郭际明, 徐晓华.  联合地基GPS和空基COSMIC掩星的可降水量研究 . 武汉大学学报 ● 信息科学版,
    [18] 张小红, 何锡扬, 郭博峰, 徐运.  基于GPS非差观测值估计大气可降水量 . 武汉大学学报 ● 信息科学版,
    [19] 赵强, 杨世植, 乔延利, 麻金继.  利用MODIS红外资料反演大气参数以及表层温度的研究 . 武汉大学学报 ● 信息科学版,
    [20] 王贵文, 王泽民, 杨剑.  地基GPS准实时反演三峡地区大气可降水量的研究 . 武汉大学学报 ● 信息科学版,
  • 加载中
计量
  • 文章访问数:  26
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26

COVID-19期间中国区域AOD与气象因子时空特征分析

doi: 10.13203/j.whugis20210209
    基金项目:

    国家自然科学基金青年项目(41904036)。

    作者简介:

    赵庆志,博士,副教授,主要从事GNSS空间环境与气候变化相关研究。zhaoqingzhia@163.com

  • 中图分类号: P208

摘要: 为了探究新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19)期间人类活动减少对我国空气质量影响,分析了气溶胶光学厚度(Aerosol Optical Depth,AOD)、大气可降水量(Precipitable Water Vapor,PWV)和气温(Temperature,T)的时空异常变化,揭示了人类活动对空气质量的影响。首先,与全球自动观测网(Aerosol Robotic Network,AERONET)提供的AOD和无线电探空仪提供的PWV和T数据对比,验证使用的AOD、PWV和T的精度。然后,分析周末与周内期间AOD、PWV和T的长时序变化趋势,发现人类活动对空气质量有一定影响。其次,研究COVID-19期间AOD、PWV和T的时空变化,证实人类活动与空气质量有较好的相关性。最后,选取中国184个不同等级的城市进一步分析,确定人口密度对AOD、PWV和T的影响程度,进一步揭示了人类活动与空气质量的具体响应关系。

English Abstract

赵庆志, 杨鹏飞, 李祖锋, 姚顽强, 姚宜斌. COVID-19期间中国区域AOD与气象因子时空特征分析[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210209
引用本文: 赵庆志, 杨鹏飞, 李祖锋, 姚顽强, 姚宜斌. COVID-19期间中国区域AOD与气象因子时空特征分析[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210209
ZHAO Qingzhi, YANG Pengfei, LI Zufeng, YAO Wanqiang, YAO Yibin. Spatial and temporal characteristics of AOD and meteorological factors in China during the period of COVID-19[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210209
Citation: ZHAO Qingzhi, YANG Pengfei, LI Zufeng, YAO Wanqiang, YAO Yibin. Spatial and temporal characteristics of AOD and meteorological factors in China during the period of COVID-19[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210209
参考文献 (40)

目录

    /

    返回文章
    返回