[1]
|
(李鹏, 普思寻, 李振洪, 等. 2000年以来胶州湾海岸线光学与SAR多源遥感变化监测研究[J]. 武汉大学学报·信息科学版, 2020, 45(9):1485-1492)
Li Peng, Pu Sixun, Li Zhenhong, et al. Coastline Change Monitoring of Jiaozhou Bay from Multi-Source SAR and Optical Remote Sensing Images since 2000[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9):1485-1492 |
[2]
|
Wang D, Cui X R, Xie F Y, et al. Multi-Feature Sea-Land Segmentation Based on Pixel-Wise Learning for Optical Remote-Sensing Imagery[J]. International Journal of Remote Sensing, 2017, 38(15):4327-4347 |
[3]
|
Cheng D C, Meng G F, Cheng G L, et al. SeNet:Structured Edge Network for Sea-Land Segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2):247-251 |
[4]
|
He L Y, Xu Q Z, Hu H M, et al. Fast and accurate sea-land segmentation based on improved SeNet and coastline database for large-scale image[C]//2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA). Xi'an, China. 2018:1-5 |
[5]
|
Chu Z Q, Tian T, Feng R Y, et al. Sea-land segmentation with res-UNet and fully connected CRF[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan. 2019:3840-3843 |
[6]
|
Shamsolmoali P, Zareapoor M, Wang R L, et al. A Novel Deep Structure U-Net for Sea-Land Segmentation in Remote Sensing Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9):3219-3232 |
[7]
|
Cui B G, Jing W, Huang L, et al. SANet:A Sea-Land Segmentation Network via Adaptive Multiscale Feature Learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:116-126[LinkOut] |
[8]
|
Liu Z L, Li F, Li N, et al. A Novel Region-Merging Approach for Coastline Extraction from Sentinel-1A IW Mode SAR Imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3):324-328 |
[9]
|
Sheng G F, Yang W, Deng X P, et al. Coastline Detection in Synthetic Aperture Radar (SAR) Images by Integrating Watershed Transformation and Controllable Gradient Vector Flow (GVF) Snake Model[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3):375-383 |
[10]
|
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence.:640-651 |
[11]
|
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015:1520-1528 |
[12]
|
Ronneberger O, Fischer, Brox T. U-Net:Convolutional Ntworks for Biomedical Image Segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015:234-241 |
[13]
|
Chen L C, Papandreou G, Kokkinos I, et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFS[EB/OL]. 2014:arXiv:1412.7062. https://arxiv.org/abs/1412.7062 |
[14]
|
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848 |
[15]
|
Chen, L C, Papandreou G, Schroff F, et al. Rethinking Atrous Convolution for Semantic Segmentation Image Segmentation[OL]. https://arxiv.org/abs/1706.05587v2, 2017 |
[16]
|
Zhao H, Shi J, Qi X, et al. Pyramid Scene Parsing Network[C]. Proceedings the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017:6230-6239 |
[17]
|
Cheng W, Yang W, Wang M, et al. Context Aggregation Network for Semantic Labeling in Aerial Images[J]. Remote Sensing, 2019, 11(10):1158-1176. |
[18]
|
He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas, America, 2016:770-778. |
[19]
|
Chen L C, Zhu Y K, Papandreou G, et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[M]//Computer Vision – ECCV 2018. Cham:Springer, 2018:833-851 |