[1] Osmanoğlu B, Sunar F, Wdowinski S, et al. Time Series Analysis of InSAR Data: Methods and Trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 90-102 doi:  10.1016/j.isprsjprs.2015.10.003
[2] Murray K, Bekaert D, Lohman R. Tropospheric Corrections for InSAR: Statistical Assessments and Applications to the Central United States and Mexico[J]. Remote Sensing of Environment, 2019, 232: 111326 doi:  10.1016/j.rse.2019.111326
[3] Bekaert D P S, Walters R J, Wright T J, et al. Statistical Comparison of InSAR Tropospheric Correction Techniques[J]. Remote Sensing of Environment, 2015, 170: 40-47 doi:  10.1016/j.rse.2015.08.035
[4] 李鹏, 高梦瑶, 李振洪, 等. 阿尔金断裂带宽幅InSAR对流层延迟估计方法评估[J]. 武汉大学学报· 信息科学版, 2020, 45 (6): 879-887 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202006011.htm

Li Peng, Gao Mengyao, Li Zhenhong, et al. Evaluation of Wide-Swath InSAR Tropospheric Delay Estimation Methods over the Altyn Tagh Fault[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 879-887 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202006011.htm
[5] Zhu B, Li J, Tang W. Correcting InSAR Topographically Correlated Tropospheric Delays Using a Power Law Model Based on Era-Interim Reanalysis[J]. Remote Sensing, 2017, 9 (8): 765 doi:  10.3390/rs9080765
[6] Bekaert D P, Hooper A J, Wright T J, et al. Robust Corrections for Topographically-Correlated Atmospheric Noise in InSAR Data from Large Deforming Regions[C] //Agu Fall Meeting, Moscone, San Francisco, California, 2013
[7] Liu C, Ji L, Zhu L, et al. InSAR-Constrained Interseismic Deformation and Potential Seismogenic Asperities on the Altyn Tagh Fault at 91. 5° E-95° E, Northern Tibetan Plateau[J]. Remote Sensing, 2018, 10: 943 doi:  10.3390/rs10060943
[8] 朱森. 利用时序InSAR技术研究青藏高原北部构造变形[D]. 武汉: 武汉大学, 2019

Zhu Sen. Tectonic Deformation in Northern Tibetan Plateau Measured by InSAR Time Series[D]. Wuhan: Wuhan Unversity, 2019
[9] Strozzi T, Wegmüller U, Tosi L, et al. Land Subsidence Monitoring with Differential SAR Interferometry[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67 (11): 1 261-1 270
[10] Ferretti A, Prati C, Rocca F, et al. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39 (1): 8-20 doi:  10.1109/36.898661
[11] Wadge G. Atmospheric Models, GPS and InSAR Measurements of the Tropospheric Water Vapour Field over Mount Etna[J]. Geophysical Research Letters, 2002, 29: 1905 http://www.staff.ncl.ac.uk/peter.clarke/offprints/Wadge_etal-2002-pp.pdf
[12] Li Z, Muller J P, Cross P, et al. Assessment of the Potential of Meris Near-Infrared Water Vapour Products to Correct ASAR Interferometric Measurements[J]. International Journal of Remote Sensing, 2006, 27 (2): 349-365 doi:  10.1080/01431160500307342
[13] Puysségur B, Michel R, Avouac J P. Tropospheric Phase Delay in Interferometric Synthetic Aperture Radar Estimated from Meteorological Model and Multispectral Imagery[J]. Journal of Geophysical Research, 2007, 112 (B5): 419 http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fwww.gps.caltech.edu%2F~avouac%2Fpublications%2FPuyssegurJGR2007_1.pdf
[14] Jolivet R, Grandin R, Lasserre C, et al. Systematic InSAR Atmospheric Phase Delay Corrections from Global Meteorological Reanalysis Data[J]. Geophysical Research Letters, 2011, 38 (17): 311 http://basin.earth.ncu.edu.tw/Course/SeminarII/abstract2014_1/2014.11.06_Wei-Ji%20Wang/R.%20Jolivet,%20Systematic%20InSAR%20tropospheric%20phase%20delay%20corrections%20from%20global%20meteorological%20reanalysis%20data%20,GEOPHYSICAL%20RESEARCH%20LETTERS,%20VOL.%2038,.pdf
[15] Jolivet R, Agram P, Lin Y N, et al. Improving InSAR Geodesy Using Global Atmospheric Models[J]. Journal of Geophysical Research: Solid Earth, 2014, 119 (3): 2 324-2 341 doi:  10.1002/2013JB010588
[16] Yu C, Li Z, Penna N, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123 (10): 9 202-9 222 doi:  10.1029/2017JB015305
[17] Cavalié O, Doin M P, Lasserre C, et al. Ground Motion Measurement in the Lake Mead Area, Nevada, by Differential Synthetic Aperture Radar Interferometry Time Series Analysis: Probing the Lithosphere Rheological Structure[J]. Journal of Geophysical Research, 2007, 112 (B3): 403 http://hal-insu.archives-ouvertes.fr/insu-01289148/file/jgrb4344.pdf
[18] Bekaert D P S, Hooper A, Wright T J. A Spatially Variable Power Law Tropospheric Correction Technique for InSAR Data[J]. Journal of Geophysical Research: Solid Earth, 2015, 120 (2): 1 345-1 356 doi:  10.1002/2014JB011558
[19] Liu S, Hanssen R Á M. On the Value of High-Resolution Weather Models for Atmospheric Mitigation in SAR Interferometry[C] //International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009
[20] Elliott J, Biggs J, Parsons B, et al. InSAR Slip Rate Determination on the Altyn Tagh Fault, Northern Tibet, in the Presence of Topographically Correlated Atmospheric Delays[J]. Geophysical Research Letters, 2008, 35 (12): 309 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6E8DEB20FF970D982461DD62EB594FEC?doi=
[21] Zhang Z, Shen Z K, Wang M, et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 2004, 32: 809-812 doi:  10.1130/G20554.1
[22] Hu Z, Mallorqui J. An Accurate Method to Correct Atmospheric Phase Delay for InSAR with the ERA5 Global Atmospheric Model[J]. Remote Sensing, 2019, 11: 1969 doi:  10.3390/rs11171969
[23] Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39: 8-20 doi:  10.1109/36.898661
[24] Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential Sar Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40: 2 375-2 383 doi:  10.1109/TGRS.2002.803792
[25] Hooper A, Zebker H, Segall P, et al. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophyiscal Research Letters, 2004, 31: 1-5 http://earth.stanford.edu/cdfm/sites/default/files/pubs/hooper2004.pdf
[26] Chen C, Zebker H. Phase Unwrapping for Large InSAR Data Sets through Statistical-Cost Tiling[C] // AGU Fall Meeting, San Francisco, California, 2001
[27] Zhang Y A, Fattahi H, Amelung F. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction[J]. Computers and Geosciences, 2019, 133: 104331 doi:  10.1016/j.cageo.2019.104331
[28] Lin Y N, Simons M, Hetland E, et al. A Multiscale Approach to Estimating Topographically Correlated Propagation Delays in Radar Interferograms[J]. Geochemistry Geophysics Geosystems, 2010, 11 (9): 2010GC003228 http://pdfs.semanticscholar.org/b362/75e793564ac8940390c041354cdc91600341.pdf
[29] Yu C, Penna N T, Li Z. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122 (3): 2 008- 2025 doi:  10.1002/2016JD025753
[30] Hersbach H, Bell B, Berrisford P, et al. The ERA5 Global Reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1 999-2 049 doi:  10.1002/qj.3803
[31] Xiao R, Yu C, Li Z, et al. Statistical Assessment Metrics for InSAR Atmospheric Correction: Applications to Generic Atmospheric Correction Online Service for InSAR (Gacos) in Eastern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96: 102289 doi:  10.1016/j.jag.2020.102289
[32] Zhu Y, Wang K, He J. Effects of Earthquake Recurrence on Localization of Interseismic Deformation Around Locked Strike: Lip Faults[J]. Journal of Geophysical Research Solid Earth, 2020, 125 (8): e2020JB019817 doi:  10.1029/2020JB019817
[33] Zheng G, Wang H, Wright T, et al. Crustal Deformation in the India - Eurasia Collision Zone from 25 Years of GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9 290-9 312 doi:  10.1002/2017JB014465