[1] |
胡云锋, 王倩倩, 刘越, 等. 国家尺度社会经济数据格网化原理和方法[J]. 地球信息科学学报, 2011, 13(5): 573-578 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201105000.htm
Hu Yunfeng, Wang Qianqian, Liu Yue, et al. Index System and Transferring Methods to Build the National Society and Economy Grid Database[J]. Journal of Geo-Information Science, 2011, 13(5): 573-578 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201105000.htm |
[2] |
柏中强, 王卷乐, 杨飞. 人口数据空间化研究综述[J]. 地理科学进展, 2013, 32(11): 1692-1702 doi: 10.11820/dlkxjz.2013.11.012
Bai Zhongqiang, Wang Juanle, Yang Fei. Research Progress in Spatialization of Population Data[J]. Progress in Geography, 2013, 32(11): 1692-1702 doi: 10.11820/dlkxjz.2013.11.012 |
[3] |
Wu S S, Qiu X M, Wang L. Population Estimation Methods in GIS and Remote Sensing: A Review [J]. GIScience & Remote Sensing, 2005, 42(1): 80-96 |
[4] |
Flowerdew R, Green M. Developments in Areal Interpolation Methods and GIS[J]. The Annals of Regional Science, 1992, 26(1): 67-78 doi: 10.1007/BF01581481 |
[5] |
Goodchild M F, Anselin L, Deichmann U. A Framework for the Areal Interpolation of Socioeconomic Data[J]. Environment and Planning A: Economy and Space, 1993, 25(3): 383-397 doi: 10.1068/a250383 |
[6] |
吕安民, 李成名, 林宗坚, 等. 人口统计数据的空间分布化研究[J]. 武汉大学学报·信息科学版, 2002, 27(3): 301-305 http://ch.whu.edu.cn/article/id/4962
Lü Anmin, Li Chengming, Lin Zongjian, et al. Spatial Distribution of Statistical Population Data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 301-305 http://ch.whu.edu.cn/article/id/4962 |
[7] |
闫庆武, 卞正富, 张萍, 等. 基于居民点密度的人口密度空间化[J]. 地理与地理信息科学, 2011, 27(5): 95-98 https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201105022.htm
Yan Qingwu, Bian Zhengfu, Zhang Ping, et al. Census Spatialization Based on Settlements Density [J]. Geography and Geo-Information Science, 2011, 27(5): 95-98 https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201105022.htm |
[8] |
Mennis J. Generating Surface Models of Population Using Dasymetric Mapping[J]. The Professional Geographer, 2008, 55(1): 31-42 |
[9] |
Su M D, Lin M C, Hsieh H I, et al. Multi-layer Multi-class Dasymetric Mapping to Estimate Population Distribution[J]. Science of the Total Environment, 2010, 408(20): 4807-4816 doi: 10.1016/j.scitotenv.2010.06.032 |
[10] |
符海月, 李满春, 赵军, 等. 人口数据格网化模型研究进展综述[J]. 人文地理, 2006, 21(3): 115-119 https://www.cnki.com.cn/Article/CJFDTOTAL-RWDL200603024.htm
Fu Haiyue, Li Manchun, Zhao Jun, et al. Summary of Grid Transformation Models of Population Data [J]. Human Geography, 2006, 21(3): 115-119 https://www.cnki.com.cn/Article/CJFDTOTAL-RWDL200603024.htm |
[11] |
董南, 杨小唤, 蔡红艳. 人口数据空间化研究进展[J]. 地球信息科学学报, 2016, 18(10): 1295-1304 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201610002.htm
Dong Nan, Yang Xiaohuan, Cai Hongyan. Research Progress and Perspective on the Spatialization of Population Data[J]. Journal of Geo-Information Science, 2016, 18(10): 1295-1304 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201610002.htm |
[12] |
Zeng C Q, Zhou Y, Wang S X, et al. Population Spatialization in China Based on Night-Time Imagery and Land Use Data[J]. International Journal of Remote Sensing, 2011, 32(24): 9599-9620 doi: 10.1080/01431161.2011.569581 |
[13] |
方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38 doi: 10.3969/j.issn.1007-3116.2011.03.006
Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al. A Review of Technologies on Random Forests[J]. Statistics and Information Forum, 2011, 26(3): 3238 doi: 10.3969/j.issn.1007-3116.2011.03.006 |
[14] |
Yang X C, Ye T T, Zhao N Z, et al. Population Mapping with Multisensor Remote Sensing Images and Point-of-Interest Data[J]. Remote Sensing, 2019, 11(5): 574 doi: 10.3390/rs11050574 |
[15] |
刘正廉, 桂志鹏, 吴华意, 等. 融合建筑物与兴趣点数据的精细人口空间化研究[J]. 测绘地理信息, 2021, 46(5): 102-106
Liu Zhenglian, Gui Zhipeng, Wu Huayi, et al. Fine-Scale Population Spatialization by Synthesizing Building Survey Data and Point of Interest Data[J]. Journal of Geomatics, 2021, 46(5): 102-106 |
[16] |
Ye T T, Zhao N Z, Yang X C, et al. Improved Population Mapping for China Using Remotely Sensed and Points-of-Interest Data Within a Random Forests Model[J]. Science of the Total Environment, 2019, 658: 936-946 doi: 10.1016/j.scitotenv.2018.12.276 |
[17] |
Sinha P, Gaughan A E, Stevens F R, et al. Assessing the Spatial Sensitivity of a Random Forest Model: Application in Gridded Population Modeling[J]. Computers, Environment and Urban Systems, 2019, 75: 132-145 doi: 10.1016/j.compenvurbsys.2019.01.006 |
[18] |
Robinson C, Hohman F, Dilkina B. A Deep Learning Approach for Population Estimation from Satellite Imagery[C]/ The 1st ACM SIGSPATIAL Workshop on Geospatial Humanities, Redondo Beach, USA, 2017 |
[19] |
Chen J, Pei T, Shaw S L, et al. Fine-Grained Prediction of Urban Population Using Mobile Phone Location Data[J]. International Journal of Geographical Information Science, 2018, 32(9): 1770-1786 doi: 10.1080/13658816.2018.1460753 |
[20] |
Zhao S, Liu Y X, Zhang R, et al. China 's Population Spatialization Based on Three Machine Learning Models[J]. Journal of Cleaner Production, 2020, 256: 120644 doi: 10.1016/j.jclepro.2020.120644 |
[21] |
Leyk S, Gaughan A E, Adamo S B, et al. The Spatial Allocation of Population: A Review of LargeScale Gridded Population Data Products and Their Fitness for Use[J]. Earth System Science Data, 2019, 11(3): 1385-1409 |
[22] |
禹文豪, 艾廷华, 杨敏, 等. 利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J]. 武汉大学学报·信息科学版, 2016, 41(2): 221-227 doi: 10.13203/j.whugis20140092
Yu Wenhao, Ai Tinghua, Yang Min, et al. Detecting "Hot Spots"of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique [J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 221-227 doi: 10.13203/j.whugis20140092 |
[23] |
杨喜平, 方志祥, 赵志远, 等. 顾及手机基站分布的核密度估计城市人群时空停留分布[J]. 武汉大学学报·信息科学版, 2017, 42(1): 49-55 doi: 10.13203/j.whugis20150646
Yang Xiping, Fang Zhixiang, Zhao Zhiyuan, et al. Analyzing Space-Time Variation of Urban Human Stay Using Kernel Density Estimation by Considering Spatial Distribution of Mobile Phone Towers [J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 49-55 doi: 10.13203/j.whugis20150646 |
[24] |
陈晴, 侯西勇. 集成土地利用数据和夜间灯光数据优化人口空间化模型[J]. 地球信息科学学报, 2015, 17 (11): 1370-1377 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201511014.htm
Chen Qing, Hou Xiyong. An Improved Population Spatialization Model by Combining Land Use Data and DMSP/OLS Data[J]. Journal of Geo-Information Science, 2015, 17(11): 1370-1377 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201511014.htm |
[25] |
Yu B L, Lian T, Huang Y X, et al. Integration of Nighttime Light Remote Sensing Images and Taxi GPS Tracking Data for Population Surface Enhancement[J]. International Journal of Geographical Information Science, 2019, 33(4): 687-706 |
[26] |
Langford M. Obtaining Population Estimates in Noncensus Reporting Zones: An Evaluation of the 3Class Dasymetric Method[J]. Computers, Environment and Urban Systems, 2006, 30(2): 161-180 |
[27] |
郭雨臣, 黄金川, 林浩曦. 多源数据融合的中国人口数据空间化研究[J]. 遥感技术与应用, 2020, 35(1): 219-232 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202001022.htm
Guo Yuchen, Huang Jinchuan, Lin Haoxi. Spatialization of China's Population Data Based on Multisource Data[J]. Remote Sensing Technology and Application, 2020, 35(1): 219-232 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202001022.htm |
[28] |
Chainey S. Examining the Influence of Cell Size and Bandwidth Size on Kernel Density Estimation Crime Hotspot Maps for Predicting Spatial Patterns of Crime[J]. Bulletin of the Geographical Society of Liege, 2013, 60(1): 7-19 |
[29] |
Lin Y P, Chu H J, Wu C F, et al. Hotspot Analysis of Spatial Environmental Pollutants Using Kernel Density Estimation and Geostatistical Techniques [J]. International Journal of Environmental Research and Public Health, 2011, 8(1): 75-88 |
[30] |
杜国明, 张树文, 张有全. 城市人口分布的空间自相关分析: 以沈阳市为例[J]. 地理研究, 2007, 26(2): 383-390 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200702019.htm
Du Guoming, Zhang Shuwen, Zhang Youquan. Analyzing Spatial Auto - correlation of Population Distribution: A Case of Shenyang City[J]. Geographical Research, 2007, 26(2): 383-390 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200702019.htm |
[31] |
Yuan K, Cheng X Q, Gui Z P, et al. A Quad-TreeBased Fast and Adaptive Kernel Density Estimation Algorithm for Heat - Map Generation[J]. International Journal of Geographical Information Science, 2019, 33(12): 2455-2476 |