[1] Ferreira A F G, Fernandes D M A, Cataring A P, et al. Localization and Positioning Systems for Emergency Responders: A Survey [J]. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2 836-2 870 https://ieeexplore.ieee.org/document/7927385
[2] Ferreira A G, Fernandes D, Cararino A P, et al. A Loose-Coupled Fusion of Inertial and UWB Assisted by a Decision Making Algorithm for Localization of Emergency Responders [J]. Electronics, 2019, 8(12): 1-21 http://repositorium.sdum.uminho.pt/bitstream/1822/63467/1/electronics-08-01463-v2.pdf
[3] Yang Y, Li J, Wang A, et al. Preliminary Assessment of the Navigation and Positioning Performance of BeiDou Regional Navigation Satellite System [J]. Science China Earth Sciences, 2014, 57(1): 144-152 doi:  10.1007/s11430-013-4769-0
[4] Yang Y, Xu Y, Li J, et al. Progress and Performance Evaluation of BeiDou Global Navigation Satellite System: Data Analysis Based on BDS-3 Demonstration System [J]. Science China Earth Sciences, 2018, 61(5): 614-624 doi:  10.1007/s11430-017-9186-9
[5] 朱庆, 曹振宇, 林珲, 等.应急测绘保障体系若干关键问题研究[J].武汉大学学报·信息科学版, 2014, 39(5): 551-555 doi:  10.13203/j.whugis20130351

Zhu Qing, Cao Zhenyu, Lin Hui. Key Technologies of Emergency Surveying and Mapping Service System [J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 551-555 doi:  10.13203/j.whugis20130351
[6] 刘兴川, 吴振锋, 林孝康.基于自适应加权算法的WLAN/MARG/GPS组合定位系统[J].清华大学学报(自然科学版), 2013, 53(7): 955-960 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201307007

Liu Xingchuan, Wu Zhenfeng, Lin Xiaokang. WLAN/MARG/GPS Integrated Positioning System Based on a Self-adaptive Weighted Algorithm [J]. Journal of Tsinghua University(Science and Technology), 2013, 53(7): 955-960 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201307007
[7] 吕宁.基于GPS/DRS的消防车辆实时定位系统的研究与实现[D].济南: 山东大学, 2006

Lü Ning.Research and Implementation of Real- Time Positioning System for Fire Engines [D]. Ji'nan: Shandong University, 2006
[8] Li Binghao, Wang Jian, Meng Xiaolin, et al.Preliminary Study on Multi-station GPS RTK Positioning to Support Emergency Service Operations in Indoor Areas[C]. IGNSS Symposium, Sydney, Australia, 2011
[9] 赵亮, 樊瑞民. GPS定位导航技术在机场应急救援中的应用[J].民航管理, 2016(6):47-49 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=669485764

Zhao Liang, Pan Ruimin. The Application of GPS in Airport Emergency Rescue[J]. Civil Aviation Management, 2016(6):47-49 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=669485764
[10] Park S K, Suh Y S. A Zero Velocity Detection Algorithm Using Inertial Sensors for Pedestrian Navigation Systems[J].Sensors, 2010, 10: 9 163-9 178 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000142522
[11] Foxlin E. Pedestrian Tracking with Shoe-Mounted Inertial Sensors [J]. IEEE Computer Graphics Applications, 2005, 25(6): 38-46 https://ieeexplore.ieee.org/document/1528431/
[12] Nilsson J O, Skog I, Händel P, et al.Foot-Mounted INS for Everybody: An Open-Source Embedded Implementation [C]. IEEE/ION Position, Location and Navigation Symposium, South Carolina, USA, 2012
[13] Ojeda L, Borenstein J. Personal Dead-Reckoning System for GPS-Denied Environment[C]. IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy, 2007
[14] Laverne M, George M, Lord D, et al. Experimental Validation of Foot to Foot Range Measurements in Pedestrian Tracking[C]. ION GNSS, Portland, USA, 2011
[15] Skog I, Nilsson J O, Händel P. An Open-Source Multi-inertial Measurement Unit (MIMU) Platform [C]. International Symposium on Inertial Sensors and Systems, Laguna Beach, CA, 2014
[16] Bancroft J B, Lachapelle G. Data Fusion Algorithms for Multiple Inertial Measurement Units [J]. Sensors, 2011, 11(7): 6 771-6 798 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000147588
[17] Tanenhaus M, Carhoun D, Geis T, et al. Miniature IMU/INS with Optimally Fused Low Drift MEMS Gyro and Accelerometers for Applications in GPS-denied Environments [C]. IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, USA, 2012
[18] Krach B, Robertson P. Integration of Foot-Mounted Inertial Sensors into a Bayesian Location Estimation Framework[C]. The 5th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 2008
[19] 刘飞, 周贤高, 杨晔, 等.相关地磁匹配定位技术[J].中国惯性技术学报, 2007, 15(1): 59-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxjsxb200701016

Liu Fei, Zhou Xiangao, Yang Ye. Geomagnetic Matching Location Using Correlative Method[J]. Journal of Chinese Inertial Technology, 2007, 15(1): 59-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxjsxb200701016
[20] 毋杰.基于RFID、惯性传感器、磁场特征的室内定位关键技术研究[D].上海: 华东师范大学, 2019

Wu Jie. Research on Major Technologies of Indoor Positioning Based on RFID, Inertial Sensors and Magnetic Features[D]. Shanghai: East China Normal University, 2019
[21] Wang B, Zhou J, Tang G, et al.Research on Visual Localization Method of Lunar Rover[J]. Scientia Sinica Informationis, 2014, 44(4): 452-460 doi:  10.1360/N112013-00226?slug=abstract
[22] 邸凯昌.勇气号和机遇号火星车定位方法评述[J].航天器工程, 2009, 18(5):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htqgc200905001

Di Kaichang. A Review of Spirit and Opportunity Rover Localization Methods [J]. Spacecraft Engineering, 2009, 18(5):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htqgc200905001
[23] Scaramuzza D, Fraundorfer F. Visual Odometry Part I: The First 30 Years and Fundamentals [J]. IEEE Robotics Automation Magazine, 2011, 18(4): 80-92
[24] Fraundorfer F, Scaramuzza D. Visual Odometry: Part Ⅱ: Matching, Robustness, Optimization, and Applications [J]. IEEE Robotics Automation Magazine, 2012, 19(2): 78-90
[25] 刘涛, 李清泉, 方志祥, 等.一种室内位置指纹数据库构建方法[J].测绘科学, 2020, DOI: 10.16251/j.cnki.1009-2307.2020.04.021

Liu Tao, Li Qingquan, Fang Zhixiang, et al.A Method of Constructing Indoor Fingerprinting Database for Pedestrian Navigation[J]. Science of Surveying and Mapping, 2020, DOI: 10.16251/j.cnki.1009-2307.2020.04.021
[26] 刘飞, 张继贤, 王坚, 等.单目视觉Tukey权因子模型室内位置测量[J].遥感学报, 2020, 24(1): 76-84 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb202001007

Liu Fei, Zhang Jixian, Wang Jian, et al. A Monocular Indoor Vision Position Measurement Method Based on the Tukey Model[J]. Journal of Remote Sensing, 2020, 24(1): 76-84 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb202001007
[27] Do T, Carrilloarce L C, Roumeliotis S I. High-Speed Autonomous Quadrotor Navigation Through Visual and Inertial Paths [J]. The International Journal of Robotics Research, 2018, 38(4):486-504 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0278364918786575
[28] Zhu C, He M, Yang S, et al. Survey of Monocular Visual Odometry [J]. Computer Engineering Applications, 2018, 54(7): 20-28
[29] 田家英, 张志华.基于近邻法的WIFI室内定位改进算法研究[J].测绘工程, 2018, 27(12): 31-36 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chgc201812007

Tian Jiaying, Zhang Zhihua. Improved Algorithm of WiFi Indoor Location Based on Nearest Neighbor Method [J]. Engineering of Surveying and Mapping, 2018, 27(12): 31-36 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chgc201812007
[30] 焦鹏.基于指纹库的室内定位算法研究[D].成都: 电子科技大学, 2019

Jiao Peng. Research on Indoor Location Algorithm Based on Fingerprint Library[D].Chengdu: University of Electronic Science and Technology of China, 2019
[31] Wang J, Hu A, Liu C, et al. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration Algorithm for an Indoor Positioning System [J]. Sensors, 2015, 15(4): 7 096-7 124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000144957
[32] 刘春燕, 王坚.基于几何聚类指纹库的约束KNN室内定位模型[J].武汉大学学报·信息科学版, 2014, 39(11): 1 287-1 292 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201411005

Liu Chunyan, Wang Jian. A Constrained KNN Indoor Positioning Model Based on a Geometric Clustering Fingerprinting Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1 287-1 292 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201411005
[33] Tseng H W, Huang Y K, Pang A C. Performance Analysis for IEEE 802.15.4 Wireless Personal Area Networks [M].New York: John Wiley and Sons, 2008
[34] Developer A. Getting Started with iBeacon [J]. Retrieved May, 2014, 10:2 018
[35] Chen L, Kuusniemi H, Chen Y, et al. Constraint Kalman Filter for Indoor Bluetooth Localization[C]. The 23rd European Signal Processing Conference, Nice, France, 2015
[36] Fowler C, Entzminger J, Corum J. Assessment of Ultra-Wideband(UWB) Technology [J]. IEEE Aerospace and Electronic Systems Magazine, 1990, 5(11): 45-49 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8032d5248303ad6dcbca199d8cfb887
[37] Tian Z, Giannakiis G B. A GLRT Approach to Data-Aided Timing Acquisition in UWB Radios-Part I: Algorithms [J]. IEEE Transactions on Wireless Communications, 2005, 4(6): 2 956-2 967 http://www.ece.mtu.edu/faculty/ztian/papers/uwb_MLtimingI.pdf
[38] Tian Z, Giannakis G B. A GLRT Approach to Data-Aided Timing Acquisition in UWB Radios-Part II: Training Sequence Design [J]. IEEE Transactions on Wireless Communications, 2005, 4(6): 2 994-3 004 https://www.dtc.umn.edu/s/resources/twc05dec2.pdf
[39] Alavi B, Pahlavan K. Bandwidth Effect on Distance Error Modeling for Indoor Geolocation [C]. The 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, Beijing, China, 2003
[40] Cazzorla A, de Angelis G, Moschitta A, et al.A 5.6- GHz UWB Position Measurement System[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 62(3): 675-683 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d77ee917fa4887f450e3f1c6b14a04c
[41] Karbownik P, Krukar G, Eidloth A, et al. Ultra-Wideband Technology-Based Localization Platform with Real-Time Signal Processing [C]. IEEE International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 2011
[42] Zhang Y, Bin L, Qi C. Characterization of On-Human-Body UWB Radio Propagation Channel [J]. Microwave and Optical Technology Letters, 2007, 49(6): 1 365-1 371
[43] Pittet S, Renaudin V, Merminod B, et al. UWB and MEMS Based Indoor Navigation [J]. The Journal of Navigation, 2008, 61(3): 369-384
[44] Savioli A, Goldoni E, Savazzi P, et al. Low Complexity Indoor Localization in Wireless Sensor Networks by UWB and Inertial Data Fusion [J]. Computer Science, 2013, 52: 723-732
[45] Fan Q, Wu Y, Hui J, et al. Integrated Navigation Fusion Strategy of INS/UWB for Indoor Carrier Attitude Angle and Position Synchronous Tracking [J]. The Scientific World Journal, 2014(1):1-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003726435
[46] Liu F, Li X, Wang J, et al. An Adaptive UWB/MEMS-IMU Complementary Kalman Filter for Indoor Location in NLOS Environment [J]. Remote Sensing, 2019, 11(22):1-21 https://www.researchgate.net/publication/337189011_An_Adaptive_UWBMEMS-IMU_Complementary_Kalman_Filter_for_Indoor_Location_in_NLOS_Environment
[47] Renaudin V, Yalak O, Tomé P, et al.Indoor Navigation of Emergency Agents [J]. European Journal of Navigation, 2007, 5: 36-45 https://www.academia.edu/1209009/Indoor_navigation_of_emergency_agents
[48] Han Houzeng, Wang Jian, Wu Jinling, et al. Performance Analysis on Carrier Phase-based Tightly-Coupled GPS/BDS/INS Integration in GNSS Degraded and Denied Environments [J]. Sensors, 2015, 15(4): 8 685-8 711 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sensors-15-08685
[49] Liu F, Wang J, Zhang J, et al. An Indoor Localization Method for Pedestrians Base on Combined UWB/PDR/Floor Map[J].Sensors, 2019, 19(11): 1-19 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603537/
[50] 杨燈, 王坚, 韩厚增, 等.地下综采面超宽带自组网人员定位系统[J].测绘科学, 2020, 45(1): 11-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx202001003

Yang Deng, Wang Jian, Han Houzeng, et al.UWB Ad Hoc Network Personnel Positioning System for Underground Comprehensive Coal Mining Face[J]. Science of Surveying and Mapping, 2020, 45(1): 11-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx202001003
[51] Han H, Wang J, Liu F, et al. An Emergency Seamless Positioning Technique Based on Ad Hoc UWB Networking Using Robust EKF[J]. Sensors, 2019, 19(14):1-18 https://www.mdpi.com/1424-8220/19/14/3135/pdf-vor