[1] Goodchild M F. Citizens as Sensors: The World of Volunteered Geography[J]. GeoJournal, 2007, 69 (4):211-221 doi:  10.1007/s10708-007-9111-y
[2] Heipke C. Crowdsourcing Geospatial Data[J]. Journal of Photogrammetry and Remote Sensing, 2010, 65(6):550-557 doi:  10.1016/j.isprsjprs.2010.06.005
[3] 王明, 李清泉, 胡庆武, 等.面向众源开放街道地图空间数据的质量评价方法[J].武汉大学学报·信息科学版, 2013, 38 (12) :1 490-1 494 http://ch.whu.edu.cn/article/id/2823

Wang Ming, Li Qingquan, Hu Qingwu, et al.Quality Analysis on Crowd Sourcing Geograph Data with OpenStreetMap Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1 490-1 494 http://ch.whu.edu.cn/article/id/2823
[4] 周晓光, 赵肄江, 李光强, 等.顾及信誉的众源时空数据模型[J].武汉大学学报·信息科学版, 2018, 43(1): 10-16 doi:  10.13203/j.whugis20150378

Zhou Xiaoguang, Zhao Yijiang, Li Guangqiang, et al. Crowdsourcing Spatio-Temporal Data Model Considering Reputation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 10-16 doi:  10.13203/j.whugis20150378
[5] 孟斌, 王劲峰, 张文忠, 等.基于空间分析方法的中国区域差异研究[J].地理科学, 2005, 25(4):393-399 doi:  10.3969/j.issn.1000-0690.2005.04.002

Meng Bin, Wang Jinfeng, Zhang Wenzhong, et al. Evaluation of Regional Disparity in China Based on Spatial Analysis[J]. Geographic Science, 2005, 25(4):393-399 doi:  10.3969/j.issn.1000-0690.2005.04.002
[6] 陈冉, 王海起, 孟斌, 等.基于位置签到数据的城市空间分析与可视化[J].地理信息世界, 2017, 25(3):85-91 doi:  10.3969/j.issn.1672-1586.2017.03.017

Chen Ran, Wang Haiqi, Meng Bin, et al. Urban Spatial Analysis and Visualization Based on Location Sign-in Data[J]. Geographic Information World, 2017, 25(3):85-91 doi:  10.3969/j.issn.1672-1586.2017.03.017
[7] Reshef D N, Reshef Y A, Finucane H K, et al. Detecting Novel Associations in Large Data Sets[J]. Science, 2011, 334 (6 062):1 518-1 524
[8] Speed T. A Correlation for the 21st Century[J]. Science, 2011, 334(6 062):1 502-1 503
[9] Bao Jie, Zheng Yu, Mokbel F M. Location-Based and Preference-Aware Recommendation Using Sparse GEO-social Networking Data[C]. The 20th International Conference on Advances in Geographic Information System, Redondo Beach, California, USA, 2012
[10] 胡庆武, 王明, 李清泉.利用位置签到数据探索城市热点与商圈[J].测绘学报, 2014, 39(3):314-321

Hu Qingwu, Wang Ming, Li Qingquan. Urban Hotspot and Commercial Area Exploration with Check-in Data[J].Journal of Surveying and Mapping, 2014, 39(3):314-321
[11] 高文秀, 朱俊杰, 侯建光.探索性数据分析在土地利用数据分析中的应用[J].武汉大学学报·信息科学版, 2009, 34(12): 1 502-1 506 http://ch.whu.edu.cn/article/id/1474

Gao Wenxiu, Zhu Junjie, Hou Jianguang. Landuse Data Analysis with Exploratory Data Analysis Method[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1 502-1 506 http://ch.whu.edu.cn/article/id/1474
[12] 禹文豪, 艾廷华, 杨敏, 等.利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J].武汉大学学报·信息科学版, 2016, 41(2): 221-227 doi:  10.13203/j.whugis20140092

Yu Wenhao, Ai Tinghua, Yang Min, et al.Detecting "Hot Spots" of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 221-227 doi:  10.13203/j.whugis20140092
[13] Diggle P J.空间统计学[M].北京:机械工业出版社, 2017
[14] 刘湘南, 黄方, 王平.GIS空间分析原理与方法[M].北京:科学出版社, 2008:189-190

Liu Xiangnan, Huang Fang, Wang Ping. Principles and Methods of GIS Spatial Analysis[M]. Beijing : Science Press, 2008:189-190
[15] 胡青峰, 张子平, 何荣, 等.基于Geoda095i区域经济增长率的空间统计分析研究[J].测绘与空间地理信息, 2007, 30(2):53-37 doi:  10.3969/j.issn.1672-5867.2007.02.016

Hu Qingfeng, Zhang Ziping, He Rong, et al.Spatial Statistical Analysis Based on Geoda095i Regional Economic Growth Rate[J]. Mapping and Spatial Geographic Information, 2007, 30(2):53-37 doi:  10.3969/j.issn.1672-5867.2007.02.016
[16] 王雪瑞, 葛斌华.我国生产性服务业空间效应研究-基于SLM、SEM模型的实证[J].中央财经大学学报, 2012(4):68-71, 96

Wang Xuerui, Ge Binhua. Research on the Spatial Effect of China's Producer Service Industry-Based on the Empirical Study of SLM and SEM Models[J].Journal of Central University of Finance and Economics, 2012(4):68-71, 96
[17] 禹文豪, 艾廷华, 杨敏, 等.利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J].武汉大学学报·信息科学版, 2016, 41(2): 221-227 doi:  10.13203/j.whugis20140092

Yu Wenhao, Ai Tinghua, Yang Min, et al. Detecting "Hot Spots" of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 221-227 doi:  10.13203/j.whugis20140092