[1] Odegard M E, Berg J W. Gravity interpretation using the Fourier integral[J]. Geophysics. 1965, 3(30):424-438.
[2] Spector A, Grant F S. Statistical Models for Interpreting Aeromagnetic Data[J]. Geophysics. 1970, 2(35):293-302.
[3] Bhattacharya B. Analysis of a vertical dike, infinitely deep, striking north by fourier transform[J]. Pure and applied geophysics. 1971, 89(1):134-138.
[4] Bhattacharya B. Continuous spectrum of the total-magnetic field anomaly due to a rectangular prismatic body[J]. Geophysics. 1966, 31(1):97-121.
[5] Sengupta S, Das S. Interpretation of the gravitational effect of a two-dimensional dike by Fourier transform[J]. Geoexploration. 1977, 15(4):251-261.
[6] Nielsen J O, Pedersen L B. Interpretation of potential fields from inclined dikes in the wavenumber domain[J]. Pure and applied geophysics. 1978, 117(4):761-771.
[7] Wu Leyuan, Tian Gang. High-precision Fourier forward modeling of potential fields[J]. Geophysics. 2014, 79(5):G59-G68.
[8] Wu Leyuan, Chen Longwei. Fourier forward modeling of vector and tensor gravity fields due to prismatic bodies with variable density contrast[J]. Geophysics. 2016, 81(1):G13-G26.
[9] Priezzhev I, Pfutzner H, Richmond. Method for 3-D gravity forward modeling and inversion in the wavenumber domain[P]. US 8,700,372 B2.
[10] Cui Y, Guo L. A wavenumber-domain iterative approach for 3D imaging of magnetic anomalies and gradients with depth constraints[J]. Journal of Geophysics and Engineering. 2019, 16(6):1032-1047.
[11] Cui Y, Guo L. A Wavenumber-Domain Iterative Approach for Rapid 3-D Imaging of Gravity Anomalies and Gradients[J]. IEEE Access. 2019, 7:134179-34188.