[1] Shi Feng, Wang Jun, Shi Jun, et al. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and Diagnosis for COVID-19[J]. IEEE Reviews in Biomedical Engineering, 2020, DOI: 10.1109/RBME.2020.2987975
[2] Kanne J P. Chest CT Findings in 2019 Novel Coronavirus (2019-Ncov) Infections from Wuhan, China:Key Points for the Radiologist[J]. Radiology, 2020, DOI: 10.1148/radiol.2020200241
[3] Bernheim A, Mei Xueyan, Huang Mingqian, et al. Chest CT Findings in Coronavirus Disease-19(COVID-19):Relationship to Duration of Infection[J]. Radiology, 2020, DOI: 10.1148/radiol.2020200463
[4] Xie Xingzhi, Zhong Zheng, Zhao Wei, et al. Chest CT for Typical 2019-Ncov Pneumonia:Relationship to Negative RT-PCR Testing[J]. Radiology, 2020, DOI: 10.1148/radiol.2020200343
[5] Narin A, Kaya C, Pamuk Z. Automatic Detection of Coronavirus Disease (COVID-19) Using X-Ray Images and Deep Convolutional Neural Networks[OL]. arXiv: 2003.10849, 2020
[6] Apostolopoulos I D, Mpesiana T A. COVID-19:Automatic Detection from X-Ray Images Utilizing Transfer Learning with Convolutional Neural Networks[J]. Physical and Engineering Sciences in Medicine, 2020, DOI: 10.1007/s13246-020-00865-4
[7] Wang L, Wong A. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images[OL]. arXiv: 2003.09871, 2020
[8] Bullock J, Luccioni A, Pham K H, et al. Mapping the Landscape of Artificial Intelligence Applications Against COVID-19[OL]. arXiv: 2003.11336, 2020
[9] Shi Feng, Xia Liming, Shan Fei, et al. Large-scale Screening of COVID-19 from Community Acquired Pneumonia Using Infection Size-Aware Classification[OL]. arXiv: 2003.09860, 2020
[10] Shan Fei, Gao Yaozong, Wang Jun, et al. Lung Infection Quantification of COVID-19 in CT Images with Deep Learning[OL]. arXiv: 2003.04655, 2020
[11] Zheng Chuangsheng, Deng Xianbo, Fu Qiang, et al. Deep Learning-Based Detection for COVID-19 from Chest CT Using Weak Label[OL]. MedRxiv, 2020, DOI: 10.1101/2020.03.12.20027185
[12] Jin Shuo, Wang Bo, Xu Haibo, et al. AI-assisted CT Imaging Analysis for COVID-19 Screening: Building and Deploying a Medical AI System in Four Weeks[OL]. MedRxiv, 2020, DOI: 10.1101/2020.03.19.20039354
[13] Long J, Shelhamer E, Darrell T.Fully Convolutional Networks for Semantic Segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, Massachusetts, USA, 2015
[14] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. International Conference on Medical Image Computing and Computer Assisted Intervention, Munich, Germany, 2015
[15] Milletari F, Navab N, Ahmadi S A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation[C]. 2016 4th International Conference on 3D Vision, Stanford, Frances, 2016
[16] Zhou Zongwei, Siddiquee M M R, Tajbakhsh N, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation[C]. The 4th Deep Learning in Medical Image Analysis (DLMIA) Workshop, Spain, 2018
[17] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016
[18] Szegedy C, Vanhoucke V, Loffe S, et al. Rethinking the Inception Architecture for Computer Vision[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016
[19] Chen Yunpeng, Li Jianan, Xiao Huaxin, et al. Dual Path Networks[J]. Advances in Neural Information Processing Systems, 2017, 8:4470-4478 http://d.old.wanfangdata.com.cn/Periodical/cgjsxb201309018
[20] Wang Fei, Jiang Mengqing, Qian Chen, et al. Residual Attention Network for Image Classification[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, 2017
[21] Wang Shuai, Kang Bo, Ma Jinlu, et al. A Deep Learning Algorithm Using CT Images to Screen for Coronavirus Disease (COVID-19)[OL]. MedRxiv, 2020, DOI: 10.1101/2020.02.14.20023028
[22] Song Ying, Zheng Shuangjia, Li Liang, et al. Deep Learning Enables Accurate Diagnosis of Novel Coronavirus(COVID-19) with CT Images[OL]. MedRxiv, 2020, DOI: 10.1101/2020.02.23.20026930
[23] Lin T Y, Dollar p, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, 2017
[24] Zhu Qikui, Du Bo, Yan Pingkun. Boundary-weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation[OL]. arXiv: 1902.08128, 2019
[25] Chollet F. Keras[OL]. https://keras.io, 2015