[1] World Health Organization (WHO).Coronavirus Disease (COVID-19) Situation Reports[DB/OL].(2020-04-21)[2020-04-30].https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.html [2] 王霞, 唐三一, 陈勇, 等.新型冠状病毒肺炎疫情下武汉及周边地区何时复工?数据驱动的网络模型分析[J/OL].中国科学: 数学, [2020-04-30].http://kns.cnki.net/kcms/detail/11.5836.o1.20200220.1907.002.html Wang Xia, Tang Sanyi, Chen Yong, et al.When will Wuhan and Its Surrounding Areas Return to Work Under Novel Coronavirus Pneumonia Epidemic?Data Driven Network Model Analysis[J/OL].Scientia Sinica Mathematica, [2020-04-30].http://kns.cnki.net/kcms/detail/11.5836.o1.20200220.1907.002.html [3] 唐三一, 唐彪, Nicola Luigi Bragazzi, 等.新型冠状病毒肺炎疫情数据挖掘与离散随机传播动力学模型分析[J/OL].中国科学: 数学, 2020, 50: 1-16 Tang Sanyi, Tang Biao, Nicola Luigi Bragazzi, et al.Analysis of COVID-19 Epidemic Traced Data and Stochastic Discrete Transmission Dynamic Model[J/OL].Scientia Sinica Mathematica, 2020, 50: 1-16 [4] 严阅, 陈瑜, 刘可伋.基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测[J/OL].中国科学: 数学, [2020-04-30].http://kns.cnki.net/kcms/detail/11.5836.O1.20200210.1444.002.html Yan Yue, Chen Yu, Liu Keji. Modeling and Prediction for the Trend of Outbreak of NCP Based on a Time-Delay Dynamic System[J/OL]. Scientia Sinica Mathematica, [2020-04-30].http://kns.cnki.net/kcms/detail/11.5836.O1.20200210.1444.002.html [5] 黄森忠, 彭志行, 靳祯.新型冠状病毒肺炎疫情控制策略研究: 效率评估及建议[J/OL].中国科学: 数学, 2020, 50: 1-14 Huang Senzhong, Peng Zhihang, Jin Zhen.Studies of the Strategies for Controlling the COVID-19 Epidemic in China: Estimation of Control Efficacy and Suggestions for Policy Makers[J/OL]. Scientia Sinica Mathematica, 2020, 50: 1-14 [6] 崔恒建, 胡涛.新型冠状病毒肺炎疫情预测预报的非线性回归方法[J/OL].中国科学: 数学, 2020, 50: 1-12 Cui Hengjian, Hu Tao. Nonlinear Regression in COVID-19 Forecasting[J/OL].Scientia Sinica Mathematica, 2020, 50: 1-12 [7] Tian H Y, Liu Y H, Li Y D. An Investigation of Transmission Control Measures During the First 50 Days of the COVID-19 Epidemic in China[J/OL]. Science, [2020-04-30].https://doi.org/10.1126/science.abb6105.html [8] He X, Lau Eric H Y, Wu P, et al. Temporal Dynamics in Viral Shedding and Transmissibility of COVID-19[J/OL].Nat Med, [2020-04-30].https://doi.org/10.1038/s41591-020-0869-5.html [9] Xiao W L, Liu Q, Sun P P, et al.A Cybernetics-Based Dynamic Infection Model for Analyzing SARS-COV-2 Infection Stability and Predicting Uncontrollable Risks[J/OL].MedRxiv, [2020-04-30].https://doi.org/10.1101/2020.03.13.20034082.html [10] Piunovskiy A, Plakhov A, Tumanov M. Optimal Impulse Control of a SIR Epidemic[J].Optimal Control Applications and Methods, 2020, 41(2): 22-29 [11] Long Y H, Wang L. Global Dynamics of a Delayed Two-Patch Discrete SIR Disease Model[J].Communications in Nonlinear Science and Numerical Simulation, 2020, 83(C): 45-53 [12] Tuerxun N, Wen B Y, Teng Z D.The Stationary Distribution in a Class of Stochastic SIRS Epidemic Models with Non-Monotonic Incidence and Degenerate Diffusion[J/OL]. Mathematics and Computers in Simulation, [2020-04-30].https://doi.org/10.1016/j.matcom.2020.03.008 [13] Zhao X, He X, Feng T, et al. A Stochastic Switched SIRS Epidemic Model with Nonlinear Incidence and Vaccination: Stationary Distribution and Extinction[J].Internation Journal of Biomathemastic, 2020, 13(3):28-38 [14] Rajasekar S P, Pitchaimani M. Ergodic Statinary Distribution and Extinction of a Stochastic SIRS Epidemic Model with Logistic Growth and Nonlinear Incidence[J/OL]. Applied Mathematics and Computation, [2020-04-30]. https://doi.org/10.1016/j.amc.2020.125143.html [15] Wan K K, Chen J, Lu C M, et al. When will the Battle Against Novel Coronavirus End in Wuhan: A SEIR Modeling Analysis[J]. Journal of Global Health, 2020, 10(1):11-16 https://www.researchgate.net/publication/339358564_When_will_the_battle_against_novel_coronavirus_end_in_Wuhan_a_SEIR_modeling_analysis [16] Iwata K, Miyakoshi C. A Simulation on Potential Secondary Spread of Novel Coronavirus in an Exported Country Using a Stochastic Epidemic SEIR Model[J]. Journal of Clinical Medicine, 2020, 9(4): 65-76 https://www.ncbi.nlm.nih.gov/pubmed/32235480 [17] Huang R, Liu M, Ding Y M. Spatial-temporal Distribution of COVID-19 in China and Its Prediction: A Data-Driven Modeling Analysis[J]. Journal of Infection in Developing Countries, 2020, 14(3): 48-55 https://www.ncbi.nlm.nih.gov/pubmed/32235084 [18] 央视网新闻.意大利官员: 真实感染人数可能是官方统计数字的10倍[EB/OL].(2020-03-29)[2020-04-30].https://baijiahao.baidu.com/s/id=1662122584233649(/wfr=spider/for=pc.html CCTV News. Italian Officials: The Number of People Infected May be 10 Times Higher than the Official Statistics[EB/OL]. (2020-03-29)[2020-04-30].https://baijiahao.baidu.com/s/id=1662122584233649/wfr=spider/for=pc.html [19] Centers for Disease Control and Prevention. Transcript CDC Media Telebriefing: Update on COVID-19[EB/OL].(2020-03-26)[2020-04-30].https://www.cdc.gov/media/releases/2020/t0309-covid-19-update.html [20] 中华人民共和国国家卫生健康委员会.疫情通报[EB/OL].(2020-02-12)[2020-04-30].http://www.nhc.gov.cn/.html National Health Commission of the People's Republic of China.Epidemic Report[EB/OL].(2020-02-12)[2020-04-30].http://www.nhc.gov.cn/.html [21] 李德仁, 邵振峰, 于文博, 等.基于时空位置大数据的公共疫情防控服务让城市更智慧[J].武汉大学学报·信息科学版, 2020, 45(4): 475-487 http://ch.whu.edu.cn/CN/abstract/abstract6645.shtml Li Deren, Shao Zhenfeng, Yu Wenbo, et al. Public Epidemic Prevention and Control Services Based on Spatiotemporal Big Data Makes Cities Smarter[J].Geomatics and Information Science of Wuhan University, 2020, 45(4): 475-487 http://ch.whu.edu.cn/CN/abstract/abstract6645.shtml