[1] |
Bagnardi M, Hooper A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties:A Bayesian Approach[J]. Geochemistry Geophysics Geosystems, 2018, 19(7):2194-2211. |
[2] |
Wang Leyang, Zhao Xiong, Gao Hua. A Method for Determining the Regularization Parameter and the Relative Weight Ratio of the Seismic Slip Distribution with Multi-source Data[J]. Journal of Geodynamics, 2018, 118(7), 1-10. |
[3] |
Wang Leyang, Gao Hua, Feng Guangcai, Xu Wenbin. Source Parameters and Triggering Links of the Earthquake Sequence in Central Italy from 2009 to 2016 Analyzed with GPS and InSAR Data[J]. Tectonphysics, 2018, 744:285-295. |
[4] |
Wang Leyang, Zhao Xiong. Determination of Smoothing Factor for the Inversion of Co-seismic Slip Distribution[J]. Journal of Geodesy and Geo-information Science, 2020, 3(1):25-35. |
[5] |
Amey R M J, Hooper A, Walters R J. A Bayesian Method for Incorporating Self-similarity into Earthquake Slip Inversions[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(7):6052-6071. |
[6] |
Xu Guangyu, Xu Caijun, Wen Yangmao, et al. Coseismic and Postseismic Deformation of the 2016 MW 6.2 Lampa Earthquake, Southern Peru, Constrained by Interferometric Synthetic Aperture Radar[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):4250-4272. |
[7] |
Okada, Y. Surface Deformation to Shear and Tensile Faults in a Halfspace[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154. |
[8] |
Okada Y. Internal Deformation Due to Shear and Tensile Fault in a Half Space[J]. Bulletin of the Seismolog-ical Society of America, 1992, 92(2):1018-1040. |
[9] |
Wright T J, Lu Z, Wicks C. Source Model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR[J]. Geophysical. Research. Letters, 2003, 30(18):381-398. |
[10] |
Jonsson S, Zebker H, Segall P, Amelung F. Fault Slip Distribution of the 1999 Mw71 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389. |
[11] |
Pedersen R, Jónsson S, Árnadóttir T, et al. Fault Slip Distribution of Two June 2000 Mw6.5 Earthquakes in South Iceland Estimated from Joint Inversion of InSAR and GPS Measurements[J]. Earth and Planetary Science Letters, 2003, 213(3-4):487-502. |
[12] |
Nunnari G, Puglisi G, Guglielmino F. Inversion of SAR Data in Active Volcanic Areas by Optimization Techniques[J]. Nonlinear Processes in Geophysics, 2005, 12(6):863-870. |
[13] |
Marchandon M, Vergnolle M, Sudhaus H, et al. Fault Geometry and Slip Distribution at Depth of the 1997 Mw 7.2 Zirkuh Earthquake:Contribution of near-field displacement data[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(2):1904-1924. |
[14] |
Xu Guangyu, Xu Caijun, Wen Yangmao, et al. Source Parameters of the 2016-2017 Central Italy Earthquake Sequence from the Sentinel-1, ALOS-2 and GPS Data[J]. Remote Sensing, 2017, 9(11):1182. |
[15] |
Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61. |
[16] |
Tawhid M A, Ali A F. A Hybrid Grey Wolf Optimizer and Genetic Algorithm for Minimizing Potential Energy Function[J]. Memetic Computing, 2017, 9(4):347-359. |
[17] |
Rex C R E S, Beno M M, Annrose J. Optimal Power Flow-Based Combined Economic and Emission Dispatch Problems Using Hybrid PSGWO Algorithm[J]. Journal of Circuits, Systems, and Computers, 2019, 28(9):1-17. |
[18] |
ElGayyar M, Emary E, Sweilam N H, et al. A Hybrid Grey Wolf-bat Algorithm for Global Optimization[C]//International Conference on Advanced Machine Learning Technologies and Applications. Springer, Cham, 2018:3-12. |
[19] |
Routray A, Singh R K, Mahanty R. Harmonic Reduction in Hybrid Cascaded Multilevel Inverter Using Modified Grey Wolf Optimization[J]. IEEE Transactions on Industry Applications, 2019, 56(2):1827-1838. |
[20] |
Mahalingam T, Subramoniam M. A Hybrid Gray Wolf and Genetic Whale Optimization Algorithm for Efficient Moving Object Analysis[J]. Multimedia Tools and Applications, 2019, 78(12). |
[21] |
Devarapalli R, Bhattacharyya B. A Hybrid Modified Grey Wolf Optimization-Sine Cosine Algorithm-Based Power System Stabilizer Parameter Tuning in A Multimachine Power System[J]. Optimal Control Applications and Methods, 2020. |
[22] |
Malik M R S, Mohideen E R, Ali L. Weighted Distance Grey Wolf Optimizer for Global Optimization Problems[C].//2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2015:1-6. |
[23] |
Wang Leyang, Ding Rui. Inversion and Precision Estimation of Earthquake Fault Parameters Based on Scaled Unscented Transformation and Hybrid PSO/Simplex Algorithm with GPS Measurement Data[J]. Measurement, 2020, 153:107422. |
[24] |
Brocher T M, Baltay A S, Hardebeck J L, et al. The Mw6.024 August 2014 South Napa Earthquake[J]. Ssmological Research Letters, 2015, 86(2A):309-326. |
[25] |
Dreger D S, Huang M H, Rodgers A, et al. Kinematic Finite-Source Model for the 24 August 2014 South Napa, California, Earthquake from Joint Inversion of Seismic, GPS, and InSAR Data[J]. Seismological Research Letters, 2015, 86(2A):327-334. |
[26] |
Feng Guangcai, Li Zhiwei, Shan Xinjian, et al. Source Parameters of the 2014 Mw 6.1 South Napa Earthquake Estimated from the Sentinel 1A, COSMO-SkyMed and GPS data[J]. Tectonophysics, 2015, 655:139-146. |
[27] |
Willmott C J, Ackleson S G, Davis R E, et al. Statistics for the evaluation and comparison of models[J]. Journal of Geophysical Research:Oceans, 1985, 90(C5):8995-9005. |
[28] |
Konca A O, Guvercin S E, Ozarpaci S, et al. Slip Distribution of the 2017 Mw6.6 Bodrum-Kos Earthquake:Resolving the Ambiguity of Fault Geometry[J]. Geophysical Journal International, 2019, 219(2):911-923. |
[29] |
USGS. Earthquake catalog released by U.S. Geological Survey[DB/OL].(2017-07-20)[2020-08-12)].https://earthquake.usgs.gov/earthquakes/eventpage/us20009ynd/executive |
[30] |
Tiryakioğlu İ, Aktuğ B, Yiğit C Ö, et al. Slip Distribution and Source Parameters of the 20 July 2017 Bodrum-Kos Earthquake (Mw6.6) from GPS Observations[J]. Geodinamica Acta, 2017, 30(1):1-14. |
[31] |
Aktug, B, Kaypak, B, Çelik, R. N. Source Parameters for the Mw=6.6, 03 February 2002, Çay Earthquake (Turkey) and Aftershocks from GPS, Southwestern Turkey[J]. Journal of Seismology, 2010, 14(3):445-456. |
[32] |
Karasözen E, Nissen E, Büyükakpınar P, et al. The 2017 July 20 Mw 6.6 Bodrum-Kos Earthquake Illuminates Active Faulting in the Gulf of Gökova, SW Turkey[J]. Geophysical Journal International, 2018, 214(1):185-199. |
[33] |
Zhao, Yingwen, Xu Caijun. Adaptive Multistart Gauss-Newton approach for Geodetic Data Inversion of Earthquake Source Parameters[J]. Journal of Geodesy, 2020, 94(2):17. |
[34] |
Ganas A, Elias P, Valkaniotis S, et al. Co-seismic deformation and preliminary fault model of the July 20, 2017 M6.6 Kos earthquake, Aegean Sea[J]. EMSC, 2017. |
[35] |
Ganas A, Elias P, Kapetanidis V, et al. The July 20, 2017 M6.6 Kos earthquake:seismic and geodetic evidence for an active north-dipping normal fault at the western end of the Gulf of Gökova (SE Aegean Sea)[J]. Pure and Applied Geophysics, 2019, 176(10):4177-4211. |