[1] 段楠, 周明.智能问答[M].北京:高等教育出版社, 2018

Duan Nan, Zhou Ming. Question Answering[M]. Beijing: Higher Education Press, 2018
[2] 张伟.聊天机器人中对话管理关键技术研究[D].北京: 北京理工大学, 2017

Zhang Wei. Research on Session Management of Chatbot[D]. Beijing: Beijing Institute of Technology, 2017
[3] 李德仁.脑认知与空间认知——论空间大数据与人工智能的集成[J].武汉大学学报·信息科学版, 2018, 43(12): 1 761-1 767 doi:  10.13203/j.whugis20180411

Li Deren. Brain Cognition and Spatial Cognition: On Integration of Geo-spatial Big Data and Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 761-1 767 doi:  10.13203/j.whugis20180411
[4] Wu Y, Wu W, Xing C, et al. Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots[C]. The 55th Annual Meeting of the Association for Computational Linguistics (ACL'17), Vancouver, Canada, 2017 https://www.researchgate.net/publication/311458189_Sequential_Match_Network_A_New_Architecture_for_Multi-turn_Response_Selection_in_Retrieval-based_Chatbots
[5] LeCun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2019, 521(7 553): 436-444
[6] 龚健雅.人工智能时代测绘遥感技术的发展机遇与挑战[J].武汉大学学报·信息科学版, 2018, 43(12): 1 788-1 796 doi:  10.13203/j.whugis20180082

Gong Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 788-1 796 doi:  10.13203/j.whugis20180082
[7] Young T, Hazarika D, Poria S, et al. Recent Trends in Deep Learning Based Natural Language Processing [EB/OL]. https://arxiv.org/pdf/1708.02709.pdf, 2018
[8] Deng L, Liu Y. Deep Learning in Natural Language Processing[M]. Singapore: Springer, 2018
[9] Shum H Y, He X D, Li D. From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1): 10-26 http://en.cnki.com.cn/Article_en/CJFDTotal-JZUS201801004.htm
[10] Serban I V, Sankar C, Germain M, et al. A Deep Reinforcement Learning Chatbot[EB/OL]. https://arxiv.org/pdf/1709.02349.pdf, 2017
[11] Ji Z C, Lu Z D, Li H. An Information Retrieval Approach to Short Text Conversation[EB/OL]. https://arxiv.org/pdf/1408.6988.pdf, 2014
[12] Wu Y, Wu W, Li Z J, et al. Topic Augmented Neural Network for Short Text Conversation[EB/OL]. https://arxiv.org/pdf/1605.00090v1.pdf, 2016
[13] Wang S L, Li D P, Geng J, et al. Learning Bi-utterance for Multi-turn Response Selection in Retrieval-based Chatbots[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 1-10
[14] Shang L F, Lu Z D, Li H. Neural Responding Machine for Short-Text Conversation[C]. The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL'15 & IJCNLP'15), Beijing, China, 2015
[15] Vinyals O, Le Q. A Neural Conversational Model[EB/OL]. https://arxiv.org/pdf/1506.05869.pdf, 2015
[16] Serban I V, Sordoni A, Bengio Y, et al. Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models[C]. The 30th AAAI Conference on Artificial Intelligence (AAAI'16), Phoenix, USA, 2016
[17] Lowe R, Pow N, Serban I, et al. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-turn Dialogue Systems[C]. The 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL'15), Prague, Czech Republic, 2015 10.18653/v1/W15-4640
[18] Kadlec R, Schmid M, Kleindienst J. Improved Deep Learning Baselines for Ubuntu Corpus Dialogs[EB/OL]. https://arxiv.org/pdf/1510.03753.pdf, 2015
[19] Yan R, Song Y P, Wu H. Learning to Respond with Deep Neural Networks for Retrieval-Based Human-Computer Conversation System[C]. The 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'16), Pisa, Italy, 2016
[20] Zhou X Y, Dong D X, Wu H, et al. Multi-view Response Selection for Human-Computer Conversation[C]. The 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP'16), Austin, Texas, USA, 2016 https://www.researchgate.net/publication/311990210_Multi-view_Response_Selection_for_Human-Computer_Conversation
[21] Zhou X Y, Li L, Dong D X, et al. Multi-turn Response Selection for Chatbots with Deep Attention Matching Network[C]. The 56th Annual Meeting of the Association for Computational Linguistics (ACL'18), Melbourne, Australia, 2018
[22] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[EB/OL]. https://arxiv.org/pdf/1706.03762.pdf, 2017
[23] Zhang Z S, Li J T, Zhu P F, et al. Modeling Multi-turn Conversation with Deep Utterance Aggregation[C]. The 27th International Conference on Computational Linguistics (COLING'18), Santa Fe, New Mexico, USA, 2018 https://www.researchgate.net/publication/325986399_Modeling_Multi-turn_Conversation_with_Deep_Utterance_Aggregation
[24] Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with Neural Networks[C]. The 27th International Conference on Neural Information Processing Systems (NIPS'14), Montreal, Quebec, Canada, 2014 https://www.researchgate.net/publication/319770465_Sequence_to_Sequence_Learning_with_Neural_Networks
[25] Li J W, Galley M, Brockett C, et al. A Diversity-Promoting Objective Function for Neural Conversation Models[C]. The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT'16), San Diego, California, USA, 2016
[26] Serban I V, Sordoni A, Lowe R, et al. A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues[C]. The 31st AAAI Conference on Artificial Intelligence (AAAI'17), San Francisco, California, USA, 2017 https://www.researchgate.net/publication/303367454_A_Hierarchical_Latent_Variable_Encoder-Decoder_Model_for_Generating_Dialogues
[27] Zhou G B, Luo P, Cao R Y, et al. Mechanism-Aware Neural Machine for Dialogue Response Generation[C]. The 31st AAAI Conference on Artificial Intelligence (AAAI'17), San Francisco, California, USA, 2017 https://www.researchgate.net/publication/322063466_Mechanism-aware_Neural_Machine_for_Dialogue_Response_Generation
[28] Xing C, Wu W, Wu Y, et al. Topic Augmented Neural Response Generation with a Joint Attention Mechanism[EB/OL]. https://arxiv.org/pdf/1606.08340.pdf, 2016
[29] Wu Y, Wu W, Yang D J, et al. Neural Response Generation with Dynamic Vocabularies[C]. The 32nd AAAI Conference on Artificial Intelligence (AAAI'18), New Orleans, Louisiana, USA, 2018 https://www.researchgate.net/publication/321417572_Neural_Response_Generation_with_Dynamic_Vocabularies
[30] Li J W, Monroe W, Ritter A, et al. Deep Reinforcement Learning for Dialogue Generation[C]. The 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP'16), Austin, Texas, USA, 2016 https://www.researchgate.net/publication/303821939_Deep_Reinforcement_Learning_for_Dialogue_Generation
[31] Li J W, Monroe W, Shi T L, et al. Adversarial Learning for Neural Dialogue Generation[C]. The 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP'17), Copenhagen, Denmark, 2017
[32] Song Y P, Yan R, Li X, et al. Two are Better than One: An Ensemble of Retrieval-and Generation-Based Dialog Systems[EB/OL]. https://arxiv.org/pdf/1610.07149.pdf, 2016
[33] Wu Y, Wei F R, Huang S H, et al. Response Generation by Context-Aware Prototype Editing[C]. The 33rd AAAI Conference on Artificial Intelligence (AAAI'19), Honolulu, Hawaii, USA, 2019