[1] Bruzzone L,Carlin L. A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images[J]. IEEE Transactionson Geoscience&Remote Sensing, 2006,44(9):2587-2600.
[2] Breuel T M. The Effects of Hyperparameters on SGD Training of Neural Networks[J]. arXiv preprint arXiv:1508.02788, 2015.
[3] Howard A G, Zhu M, Chen B, et al. Mobilenets:Efficient Convolutional Neural Networks for Mobile Vision Applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[4] Kang Z, Qu Z. Application of BP Neural Network Optimized by Genetic Simulated Annealing Algorithm to Prediction of Air Quality Index in Lanzhou[C].20172nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). IEEE, 2017:155-160.
[5] Tong XY, Xia GS, Lu Q,et al. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models[J]. Remote Sens. Environ. 2020, 237, 111322.
[6] Gerke M.Use of the Stair Vision Library within the ISPRS 2D Semantic Labeling Benchmark(Vaihingen).Holland:University of Twente.2014.
[7] Pan Xuran, Gao Lianru, Marinoni A, et al. Semantic Labeling of High Resolution Aerial Imagery and LiDAR Data with Fine Segmentation Network[J]. Remote Sensing, 2018, 10(5):743.
[8] Dong R, Pan X, Li F. DenseU-Net-based Semantic Segmentation of Small Objects in Urban Remote Sensing Images[J]. IEEE Access, 2019,(99):1.
[9] Xiong D, He C, Liu X, et al. An End-To-End Bayesian Segmentation Network Based on a Generative Adversarial Network for Remote Sensing Images[J]. Remote Sensing, 2020, 12(2):216.