[1] Tran D, Bourdev L, Fergus R, et al. Learning Spatiotemporal Features with 3D Convolutional Networks[C]// 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015
[2] Tran D, Wang H, Torresani L, et al. A Closer Look at Spatiotemporal Convolutions for Action Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
[3] 裴颂文, 杨保国, 顾春华. 融合的三维卷积神经网络的视频流分类研究[J]. 小型微型计算机系统, 2018, 39(10): 2 266-2 270 https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201810027.htm

Pei Songwen, Yang Baoguo, Gu Chunhua. Research on Video Stream Classification Using 3D ConvNet Ensemble Fusion Model[J]. Journal of Chinese Computer Systems, 2018, 39(10): 2 266-2 270 https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201810027.htm
[4] 吴培良, 杨霄, 毛秉毅, 等. 一种视角无关的时空关联深度视频行为识别方法[J]. 电子与信息学报, 2019, 41(4): 904-910 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201904020.htm

Wu Peiliang, Yang Xiao, Mao Bingyi, et al. A Perspective-Independent Method for Behavior Recognition in Depth Video via Temporal-Spatial Correlating[J]. Journal of Electronics and Information Technology, 2019, 41(4): 904-910 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201904020.htm
[5] Simonyan K, Zisserman A. Two-Stream Convolutional Networks for Action Recognition in Videos[C]// Advances in Neural Information Processing Systems, Montreal, Canada, 2014
[6] Sevilla-Lara L, Liao Y, Güney F, et al. On the Integration of Optical Flow and Action Recognition[C]// German Conference on Pattern Recognition, Springer, Cham, 2018
[7] Huang D A, Ramanathan V, Mahajan D, et al. What Makes a Video a Video: Analyzing Temporal Information in Video Understanding Models and Datasets[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
[8] 熊汉江, 郑先伟, 丁友丽, 等. 基于2D-3D语义传递的室内三维点云模型语义分割[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2 303-2 309 doi:  10.13203/j.whugis20180190

Xiong Hanjiang, Zheng Xianwei, Ding Youli, et al. Semantic Segmentation of Indoor 3D Point Cloud Model Based on 2D-3D Semantic Transfer[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 303-2 309 doi:  10.13203/j.whugis20180190
[9] Luo Z, Hsieh J T, Jiang L, et al. Graph Distillation for Action Detection with Privileged Modalities[C]// European Conference on Computer Vision, Munich, Germany, 2018
[10] Wang X, Girshick R, Gupta A, et al. Non-local Neural Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
[11] Diba A, Sharma V, Van Gool L. Deep Temporal Linear Encoding Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
[12] He K, Zhang X, Ren S, et al. Identity Mappings in Deep Residual Networks[C]//European Conference on Computer Vision, Amsterdam, Netherlands, 2016
[13] Hara K, Kataoka H, Satoh Y. Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and Imagenet?[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
[14] Khurram S, Amir Z, Mubarak S. UCF-101: A Dataset of 101 Human Action Classes from Videos in the Wild[EB/OL]. (2012-12-01)[2019-05‍-13]. https://www.crcv.ucf.edu/papers/UCF101_CRCV-TR-12-01.pdf
[15] Kuehne H, Jhuang H, Garrote E, et al. HMDB: A Large Video Database for Human Motion Recognition[C]// International Conference on Computer Vision, Barcelona, Spain, 2011
[16] 李锐, 沈雨奇, 蒋捷, 等. 公共地图服务中访问热点区域的时空规律挖掘[J]. 武汉大学学报·信息科学版, 2018, 43(9): 1 408-1 415 doi:  10.13203/j.whugis20160424

Li Rui, Shen Yuqi, Jiang Jie, et al. Temporal and Spatial Characteristics of Hotspots in Public Map Service[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1 408-1 415 doi:  10.13203/j.whugis20160424
[17] 胡涛, 朱欣焰, 呙维, 等. 融合颜色和深度信息的运动目标提取方法[J]. 武汉大学学报·信息科学版, 2019, 44(2): 276-282 doi:  10.13203/j.whugis20160535

Hu Tao, Zhu Xinyan, Guo Wei, et al. A Moving Object Detection Method Combining Color and Depth Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 276-282 doi:  10.13203/j.whugis20160535
[18] Borgwardt K M, Gretton A, Rasch M J, et al. Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy[J]. Bioinformatics, 2006, 22(14): e49-e57 doi:  10.1093/bioinformatics/btl242
[19] Long M, Cao Y, Wang J, et al. Learning Transferable Features with Deep Adaptation Networks[C]// The 32nd International Conference on Machine Learning, Lille, France, 2015
[20] Long M, Zhu H, Wang J, et al. Deep Transfer Learning with Joint Adaptation Networks[C]// The 34th International Conference on Machine Learning, Sydney, Australia, 2017
[21] Xie S, Girshick R, Dollár P, et al. Aggregated Residual Transformations for Deep Neural Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017