[1] Batty M. The Pulse of the City[J]. Environment and Planning B: Planning and Design, 2010, 37(4): 575-577
[2] 中华人民共和国2019年国民经济和社会发展统计公报[OL].http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html, 2020

Statistical Bulletin of National Economic and Social Development of the People's Republic of China in 2019[OL]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html, 2020
[3] 李清泉.从Geomatics到Urban Informatics[J].武汉大学学报·信息科学版, 2017, 42(1): 1-6 doi:  10.13203/j.whugis20160200

Li Qingquan. From Geomatics to Urban Informatics[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1):1-6 doi:  10.13203/j.whugis20160200
[4] 龚健雅, 张翔, 向隆刚, 等.智慧城市综合感知与智能决策的进展及应用[J].测绘学报, 2019, 48(12): 1 482-1 497 http://www.cqvip.com/QK/90069X/201912/7100616217.html

Gong Jianya, Zhang Xiang, Xiang Longgang, et al. Progress and Applications for Integrated Sensing and Intelligent Decision in Smart City[J].Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1 482-1 497 http://www.cqvip.com/QK/90069X/201912/7100616217.html
[5] 李德仁, 邵振峰.论物理城市、数字城市和智慧城市[J].地理空间信息, 2018, 16(9):1-4, 10 http://www.cnki.com.cn/Article/CJFDTotal-DXKJ201809003.htm

Li Deren, Shao Zhenfeng. Research on Physical City, Digital City and Smart City[J]. Geospatial Information, 2018, 16(9):1-4, 10 http://www.cnki.com.cn/Article/CJFDTotal-DXKJ201809003.htm
[6] 2018年城乡建设统计年鉴[OL].http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/, 2019

2018 Urban and Rural Construction Statistical Yearbook[OL].http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/, 2019
[7] Du R, Santi P, Xiao M, et al. The Sensable City: A Survey on the Deployment and Management for Smart City Monitoring[J]. IEEE Communications Surveys & Tutorials, 2018, 21(2): 1 533-1 560 http://ieeexplore.ieee.org/document/8533352
[8] 汪韬阳, 李熙, 田礼乔, 等.城市建筑群航天遥感动态监测[J].武汉大学学报·信息科学版, 2020, 45(5):640-650 doi:  10.13203/j.whugis20200096

Wang Taoyang, Li Xi, Tian Liqiao, et al. Space Remote Sensing Dynamic Monitoring for Urban Complex[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5):640-650 doi:  10.13203/j.whugis20200096
[9] Yang C, Li Q, Zhao T, et al. Detecting Spatiotemporal Features and Rationalities of Urban Expansions Within the Guangdong-Hong Kong-Macao Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data[J]. Remote Sensing, 2019, 11(19):2 215
[10] 关丽, 丁燕杰, 刘红霞, 等.新型智慧城市下的体检评估体系构建及应用[J].测绘科学, 2020, 45(3): 135-142 http://www.cnki.com.cn/Article/CJFDTotal-CHKD202003023.htm

Guan Li, Ding Yanjie, Liu Hongxia, et al. Construction and Application of Health Examination Evaluation System in New Smart City[J]. Science of Surveying and Mapping, 2020, 45(3):135-142 http://www.cnki.com.cn/Article/CJFDTotal-CHKD202003023.htm
[11] Liu Y, Liu X, Gao S, et al. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments[J]. Annals of the Association of American Geographers, 2015, 105(3): 512-530 doi:  10.1080/00045608.2015.1018773
[12] Tu W, Cao J, Yue Y, et al. Coupling Mobile Phone and Social Media Data: A New Approach to Understanding Urban Functions and Diurnal Patterns[J]. International Journal of Geographical Information Science, 2017, 31(12): 2 331-2 358 doi:  10.1080/13658816.2017.1356464
[13] Cao R, Tu W, Yang C, et al. Deep Learning-Based Remote and Social Sensing Data Fusion for Urban Region Function Recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, DOI: 10.1016/j.isprsjprs.2020.02.014
[14] Li S, Lü D, Liu X, et al. The Varying Patterns of Rail Transit Ridership and Their Relationships with Fine-Scale Built Environment Factors: Big Data Analytics from Guangzhou[J]. Cities, 2020, 99:102 580
[15] 王波, 卢佩莹, 甄峰.智慧社会下的城市地理学研究:基于居民活动的视角[J].地理研究, 2018, 37(10): 2 075-2 086 http://d.old.wanfangdata.com.cn/Periodical_dlyj201810015.aspx

Wang Bo, Loo B P Y, Zhen Feng. Urban Geography Research in the E-Society: A Perspective from Human Activity[J]. Geographical Research, 2018, 37(10): 2 075-2 086 http://d.old.wanfangdata.com.cn/Periodical_dlyj201810015.aspx
[16] 柴彦威, 申悦, 肖作鹏, 等.时空间行为研究动态及其实践应用前景[J].地理科学进展, 2012, 31(6):667–675 http://qikan.cqvip.com/Qikan/Article/Detail?id=42386514

Chai Yanwei, Shen Yue, Xiao Zuopeng, et al. Review for Space-Time Behavior Research: Theory Frontiers and Application in the Future[J]. Progress in Geography, 2012, 31(6): 667-675 http://qikan.cqvip.com/Qikan/Article/Detail?id=42386514
[17] Medina J R, Noorvand H, Shane U B, et al. Statistical Validation of Crowdsourced Pavement Ride Quality Measurements from Smartphones[J]. Journal of Computing in Civil Engineering, 2020, 34(3): 04 020 009 http://www.researchgate.net/publication/339886626_Statistical_Validation_of_Crowdsourced_Pavement_Ride_Quality_Measurements_from_Smartphones
[18] 张鹏, 郭山川, 白旭宇, 等.近30 a内南京市生态红线区生态环境演变分析[J].地理空间信息, 2020, 18(3): 92-96 http://www.zhangqiaokeyan.com/academic-journal-cn_geospatial-information_thesis/0201278539870.html

Zhang Peng, Guo Shanchuan, Bai Xuyu, et al. Analysis of Eco-environmental Evolution in the Ecological Protection Redline Area of Nanjing City in the Past 30 Years[J]. Geospatial Information, 2020, 18(3): 92-96 http://www.zhangqiaokeyan.com/academic-journal-cn_geospatial-information_thesis/0201278539870.html
[19] 刘瑜, 詹朝晖, 朱递, 等.集成多源地理大数据感知城市空间分异格局[J].武汉大学学报·信息科学版, 2018, 43(3): 327-335 doi:  10.13203/j.whugis20170383

Liu Yu, Zhan Chaohui, Zhu Di, et al. Incorporating Multi-source Big Geo-data to Sense Spatial Heterogeneity Patterns in an Urban Space[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 327-335 doi:  10.13203/j.whugis20170383
[20] Tu W, Hu Z, Li L, et al. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data[J]. Remote Sensing, 2018, 10(1): 141 http://www.researchgate.net/publication/322589892_Portraying_Urban_Functional_Zones_by_Coupling_Remote_Sensing_Imagery_and_Human_Sensing_Data
[21] Kim H G, Lee S, Kyeong S.Discovering Hot Topics Using Twitter Streaming Data Social Topic Detection and Geographic Clustering[C]. 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), Niagara Falls, Canada, 2013
[22] 谢永俊, 彭霞, 黄舟, 等.基于微博数据的北京市热点区域意象感知[J].地理科学进展, 2017, 36(9): 1 099-1 110 http://d.wanfangdata.com.cn/Periodical/dlkxjz201709007

Xie Yongjun, Peng Xia, Huang Zhou, et al. Image Perception of Beijing's Regional Hotspots Based on Microblog Data[J]. Progress in Geography, 2017, 36(9): 1 099- 1 110 http://d.wanfangdata.com.cn/Periodical/dlkxjz201709007
[23] Zhai S, Xu X, Yang L, et al. Mapping the Popularity of Urban Restaurants Using Social Media Data[J]. Applied Geography, 2015, 63: 113-120 http://www.cabdirect.org/abstracts/20153364362.html
[24] Yan Q, Zhou S, Wu S. The Influences of Tourists' Emotions on the Selection of Electronic Word of Mouth Platforms[J]. Tourism Management, 2018, 66: 348-363 http://smartsearch.nstl.gov.cn/paper_detail.html?id=cbba01f04f7b9e7009fc1c9cb5fb6acf
[25] 王圣音, 刘瑜, 陈泽东, 等.大众点评数据下的城市场所范围感知方法[J].测绘学报, 2018, 47(8): 1 105-1 113 http://d.wanfangdata.com.cn/periodical/chxb201808011
[26] 潘碧麟, 王江浩, 葛咏, 等.基于微博签到数据的成渝城市群空间结构及其城际人口流动研究[J].地球信息科学学报, 2019, 21(1):68-76 http://d.wanfangdata.com.cn/periodical/dqxxkx201901008

Pan Bilin, Wang Jianghao, Ge Yong, et al. Spatial Structure and Population Flow Analysis in Chengdu-Chongqing Urban Agglomeration Based on Weibo Check-in Big Data[J]. Journal of Geo-Information Science, 2019, 21(1): 68-76 http://d.wanfangdata.com.cn/periodical/dqxxkx201901008
[27] Louail T, Lenormand M, Cantu R O G, et al. From Mobile Phone Data to the Spatial Structure of Cities[J]. Scientific Reports, 2015, 4(1): 5 276 http://go.nature.com/mObYEV
[28] Liu X, Gong L, Gong Y, et al. Revealing Travel Patterns and City Structure with Taxi Trip Data[J]. Journal of Transport Geography, 2015, 43:78-90 http://www.sciencedirect.com/science/article/pii/S0966692315000253
[29] Cao J, Li Q, Tu W, et al. Characterizing Preferred Motif Choices and Distance Impacts[J]. PloS One, 2019, 14(4):e0215242 http://www.ncbi.nlm.nih.gov/pubmed/30990848
[30] Ahas R, Aasa A, Yuan Y, et al. Everyday Space-Time Geographies: Using Mobile Phone-Based Sensor Data to Monitor Urban Activity in Harbin, Paris, and Tallinn[J]. International Journal of Geographical Information Science, 2015, 29(11): 2 017-2 039 http://dl.acm.org/citation.cfm?id=2833950
[31] 牟乃夏, 张恒才, 陈洁, 等.轨迹数据挖掘城市应用研究综述[J].地球信息科学学报, 2015, 17(10): 1 136–1 142 http://www.cnki.com.cn/Article/CJFDTotal-DQXX201510002.htm

Mou Naixia, Zhang Hengcai, Chen Jie, et al. A Review on the Application Research of Trajectory Data Mining in Urban Cities[J]. Journal of Geo-Information Science, 2015, 17(10): 1 136-1 142 http://www.cnki.com.cn/Article/CJFDTotal-DQXX201510002.htm
[32] Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding Individual Human Mobility Patterns[J]. Nature, 2008, 453(7 196): 779-782 doi:  10.1038/nature06958
[33] Calabrese F, Ferrari L, Blondel V D. Urban Sensing Using Mobile Phone Network Data: A Survey of Research[J]. ACM Computing Surveys, 2014, 47(2): 1-20 doi:  10.1145/2655691
[34] Zhao P. Sustainable Urban Expansion and Transportation in a Growing Megacity: Consequences of Urban Sprawl for Mobility on the Urban Fringe of Beijing[J]. Habitat International, 2010, 34(2): 236-243 http://www.sciencedirect.com/science/article/pii/S0197397509000757
[35] Hu L, Sun T, Wang L. Evolving Urban Spatial Structure and Commuting Patterns: A Case Study of Beijing, China[J]. Transportation Research Part D: Transport and Environment, 2018, 59: 11-22 http://smartsearch.nstl.gov.cn/paper_detail.html?id=d7ed84dbe637e399888994c2aabe08a6
[36] Tu W, Cao R, Yue Y, et al. Spatial Variations in Urban Public Ridership Derived from GPS Trajectories and Smart Card Data[J]. Journal of Transport Geography, 2018, 69:45-57 http://www.sciencedirect.com/science/article/pii/S0966692317304155
[37] Wu W, Hong J. Does Public Transit Improvement Affect Commuting Behavior in Beijing, China? A Spatial Multilevel Approach[J]. Transportation Research Part D: Transport and Environment, 2017, 52(Part B):471-479 http://www.sciencedirect.com/science/article/pii/S1361920915302054
[38] Gao Q L, Li Q Q, Yue Y, et al.Exploring Changes in the Spatial Distribution of the Low-to-Moderate Income Group Using Transit Smart Card Data[J]. Computers, Environment and Urban Systems, 2018, 72: 68-77 http://www.sciencedirect.com/science/article/pii/S0198971517303496
[39] Cai J, Huang B, Song Y. Using Multi-source Geospatial Big Data to Identify the Structure of Polycentric Cities[J]. Remote Sensing of Environment, 2017, 202:210-221 http://www.sciencedirect.com/science/article/pii/s0034425717302985
[40] Kamenjuk P, Aasa A, Sellin J. Mapping Changes of Residence with Passive Mobile Positioning Data: The Case of Estonia[J]. International Journal of Geographical Information Science, 2017, 31(7): 1 425-1 447 http://www.researchgate.net/publication/315111130_Mapping_changes_of_residence_with_passive_mobile_positioning_data_the_case_of_Estonia
[41] Huang J, Levinson D, Wang J, et al. Job-Worker Spatial Dynamics in Beijing: Insights from Smart Card Data[J]. Cities, 2019, 86:83-93 http://www.sciencedirect.com/science/article/pii/S0264275118305845
[42] Kwan M P. Time, Information Technologies, and the Geographies of Everyday Life[J]. Urban Geography, 2002, 23(5): 471-482 doi:  10.2747/0272-3638.23.5.471
[43] 刘学, 甄峰, 张敏, 等.网上购物对个人出行与城市零售空间影响的研究进展及启示[J].地理科学进展, 2015, 34(1): 48-54 http://d.wanfangdata.com.cn/periodical/dlkxjz201501006

Liu Xue, Zhen Feng, Zhang Min, et al. Research Review of Online Shopping Impact on Personal Travel and Urban Retail Space and Implications[J]. Progress in Geography, 2015, 34(1): 48-54 http://d.wanfangdata.com.cn/periodical/dlkxjz201501006
[44] Jendryke M, Balz T, McClure S C, et al. Putting People in the Picture: Combining Big Location-Based Social Media Data and Remote Sensing Imagery for Enhanced Contextual Urban Information in Shanghai[J]. Computers, Environment and Urban Systems, 2017, 62: 99-112 http://www.sciencedirect.com/science/article/pii/S019897151630285X
[45] Shelton T, Poorthuis A, Zook M. Social Media and the City: Rethinking Urban Socio-Spatial Inequality Using User-Generated Geographic Information[J]. Landscape and Urban Planning, 2015, 142: 198-211 http://www.sciencedirect.com/science/article/pii/S0169204615000523
[46] Liu Y, Sui Z, Kang C, et al. Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-in Data[J]. PloS One, 2014, 9(1): e86026 http://pubmedcentralcanada.ca/pmcc/articles/PMC3895021/
[47] Guan X, Chen C. Using Social Media Data to Understand and Assess Disasters[J].Natural Hazards, 2014, 74(2): 837-850 doi:  10.1007/s11069-014-1217-1
[48] Williams M L, Burnap P, Sloan L. Crime Sensing with Big Data: The Affordances and Limitations of Using Open-Source Communications to Estimate Crime Patterns[J]. The British Journal of Criminology, 2017, 57(2): 320-340 http://www.tandfonline.com/servlet/linkout?suffix=CIT0082&dbid=16&doi=10.1080%2F17440572.2018.1460071&key=10.1093%2Fbjc%2Fazw031
[49] Kang Y, Jia Q, Gao S, et al. Extracting Human Emotions at Different Places Based on Facial Expressions and Spatial Clustering Analysis[J]. Transactions in GIS, 2019, 23(3): 450-480 doi:  10.1111/tgis.12552
[50] Xu Y, Li X, Shaw S L, et al. Effects of Data Preprocessing Methods on Addressing Location Uncertainty in Mobile Signaling Data[J]. Annals of the American Association of Geographers, 2020, DOI: 10.1080/24694452.2020.1773232
[51] Zhao Z, Shaw S L, Yin L, et al. The Effect of Temporal Sampling Intervals on Typical Human Mobility Indicators Obtained from Mobile Phone Location Data[J]. International Journal of Geographical Information Science, 2019, 33(7):1 471-1 495 doi:  10.1080/13658816.2019.1584805
[52] 裴韬, 刘亚溪, 郭思慧, 等.地理大数据挖掘的本质[J].地理学报, 2019, 74(3):586-598 http://www.cnki.com.cn/Article/CJFDTotal-DLXB201903015.htm

Pei Tao, Liu Yaxi, Guo Sihui, et al. Principle of Big Geodata Mining[J]. Acta Geographica Sinica, 2019, 74(3):586-598 http://www.cnki.com.cn/Article/CJFDTotal-DLXB201903015.htm
[53] 陆锋, 刘康, 陈洁.大数据时代的人类移动性研究[J].地球信息科学学报, 2014, 16(5): 665-672 http://d.wanfangdata.com.cn/Periodical/dqxxkx201405001

Lu Feng, Liu Kang, Chen Jie. Research on Human Mobility in Big Data Era[J]. Journal of Geo-Information Science, 2014, 16(5): 665-672. http://d.wanfangdata.com.cn/Periodical/dqxxkx201405001
[54] Zhang X, Xu Y, Tu W, et al.Do Different Datasets Tell the Same Story About Urban Mobility—A Comparative Study of Public Transit and Taxi Usage[J]. Journal of Transport Geography, 2018, 70:78-90 http://www.sciencedirect.com/science/article/pii/S0966692317307093
[55] Tu W, Zhu T, Xia J, et al. Portraying the Spatial Dynamics of Urban Vibrancy Using Multisource Urban Big Data[J]. Computer Environment and Urban Systems, 2020, 80:101 428 http://www.sciencedirect.com/science/article/pii/S0198971519302674
[56] Wang X W, Han X P, Wang B H. Correlations and Scaling Laws in Human Mobility[J]. PloS One, 2014, 9(1): e84954 http://pubmedcentralcanada.ca/pmcc/articles/PMC3890294/
[57] Bettencourt L M A. The Origins of Scaling in Cities[J]. Science, 2013, 340(6 139): 1 438-1 441 http://europepmc.org/abstract/med/23788793
[58] Ding R. The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies[J]. Complexity, 2019, DOI:  10.1155/2019/4180890
[59] Zhang D, He T, Zhang F, et al. Urban-Scale Human Mobility Modeling with Multi-Source Urban Network Data[J]. IEEE/ACM Transactions on Networking, 2018, 26(2): 671-684 http://ieeexplore.ieee.org/document/8319925