[1] 周佳薇, 吴晓春. "问题地图"现状分析及对策[J]. 测绘技术装备, 2018, 20(4): 42-43 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKJ201804014.htm

Zhou Jiawei, Wu Xiaochun. Current Situation Analysis and Countermeasure of "Problem Map"[J]. Geomatics Technology and Equipment, 2018, 20(4): 42-43 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKJ201804014.htm
[2] 黄龙. 一种快速挖掘互联网问题地图图片的方法[J]. 测绘与空间地理信息, 2017, 40(11): 92-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201711030.htm

Huang Long. Research on the Method of Fast Mining Internet Problem Map Picture[J]. Geomatics & Spatial Information Technology, 2017, 40(11): 92-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201711030.htm
[3] Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90 doi:  10.1145/3065386
[4] Szegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015
[5] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016
[6] Huang G, Liu Z, Weinberger K Q, et al. Densely Connected Convolutional Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
[7] Hu J, Shen L. Squeeze-and-Excitation Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
[8] Zhang L L, Lin L, Liang X D, et al. Is Faster R-CNN Doing Well for Pedestrian Detection?[M]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 443-457
[9] 李庆辉, 李艾华, 王涛, 等. 结合有序光流图和双流卷积网络的行为识别[J]. 光学学报, 2018, 38(6): 226-232 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201806032.htm

Li Qinghui, Li Aihua, Wang Tao, et al. Double-Stream Convolutional Networks with Sequential Optical Flow Image for Action Recognition[J]. Acta Optica Sinica, 2018, 38(6): 226-232 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201806032.htm
[10] Schmidhuber J. Deep Learning in Neural Networks: An Overview[J]. Neural Networks, 2015, 61: 85-117 doi:  10.1016/j.neunet.2014.09.003
[11] 郑胤, 陈权崎, 章毓晋. 深度学习及其在目标和行为识别中的新进展[J]. 中国图象图形学报, 2014(2): 175-184 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201402002.htm

Zheng Yin, Chen Quanqi, Zhang Yujin. Deep Learning and Its New Progress in Object and Behavior Recognition[J]. Journal of Image and Graphics, 2014(2): 175-184 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201402002.htm
[12] Yamashita T, Watasue T. Hand Posture Recognition Based on Bottom-Up Structured Deep Convolutional Neural Network with Curriculum Learning[C]. 2014 IEEE International Conference on Image Processing, Paris, France, 2014
[13] 张兵. 遥感大数据时代与智能信息提取[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1 861-1 871 doi:  10.13203/j.whugis20180172

Zhang Bing. Remotely Sensed Big Data Era and Intelligent Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 861-1 871 doi:  10.13203/j.whugis20180172
[14] 徐江河, 张飞舟, 张立福, 等. 一种综合利用图像和光谱信息的物体真假模式识别方法[J]. 武汉大学学报·信息科学版, 2019, 44(8): 1 174-1 181 doi:  10.13203/j.whugis20190139

Xu Jianghe, Zhang Feizhou, Zhang Lifu, et al. A Method of True and Fake Objects Pattern Recognition Integrating Image Information and Spectral Information[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1 174-1 181 doi:  10.13203/j.whugis20190139
[15] 彭向阳, 刘洋, 王柯, 等. 利用卷积神经网络进行绝缘子自动定位[J]. 武汉大学学报·信息科学版, 2019, 44(4): 563-569 doi:  10.13203/j.whugis20170175

Peng Xiangyang, Liu Yang, Wang Ke, et al. An Automatically Locating Method for Insulator Object Based on CNNS[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 563-569 doi:  10.13203/j.whugis20170175
[16] 葛芸, 江顺亮, 叶发茂, 等. 基于ImageNet预训练卷积神经网络的遥感图像检索[J]. 武汉大学学报·信息科学版, 2018, 43(1): 67-73 doi:  10.13203/j.whugis20150498

Ge Yun, Jiang Shunliang, Ye Famao, et al. Remote Sensing Image Retrieval Using Pre-Trained Convolutional Neural Networks Based on ImageNet[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 67-73 doi:  10.13203/j.whugis20150498
[17] Lin T Y, et al. Feature Pyramid Networks for Object Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
[18] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1 137-1 149 doi:  10.1109/TPAMI.2016.2577031
[19] Girshick R. Fast R-CNN[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015