[1] Neitzel F. Generalization of Total Least-Squares on Example of Unweighted and Weighted 2D Similarity Transformation[J]. Journal of Geodesy, 2010, 84 (12): 751-762 doi:  10.1007/s00190-010-0408-0
[2] Akyilmaz O. Total Least Squares Solution of Coordinate Transformation[J]. Survey Review, 2007, 39 (303): 68-80 doi:  10.1179/003962607X165005
[3] Zhou Y, Fang X. A Mixed Weighted Least Squares and Weighted Total Least Squares Adjustment Method and Its Geodetic Applications[J]. Survey Review, 2016, 48 (351): 421-429 doi:  10.1179/1752270615Y.0000000040
[4] Tong X H, Jin Y M, Zhang S L, et al. Bias-Corrected Weighted Total Least-Squares Adjustment of Condition Equations[J]. Journal of American Surveying Engineering, 2014, 141 (2): 04014013 http://d.wanfangdata.com.cn/periodical/26f7db7fb994669a82ad317964b29beb
[5] 陈义, 陆珏, 郑波. 总体最小二乘方法在空间后方交会中的应用[J]. 武汉大学学报·信息科学版, 2008, 33 (12): 1 271-1 274 http://ch.whu.edu.cn/article/id/1776

Chen Yi, Lu Jue, Zheng Bo. Application of Total Least Squares to Space Resection[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1 271-1 274 http://ch.whu.edu.cn/article/id/1776
[6] Xu C J, Wang L Y, Wen Y M, et al. Strain Rates in the Sichuan-Yunnan Region Based upon the Total Least Squares Heterogeneous Strain Model from GPS Data[J]. Terrestrial Atmospheric and Oceanic Sciences, 2011, 22 (2): 133-147 doi:  10.3319/TAO.2010.07.26.02(TibXS)
[7] Fang X. Weighted Total Least Squares: Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8): 733-749 doi:  10.1007/s00190-013-0643-2
[8] Mahboub V. On Weighted Total Least-Squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86 (5): 359-367 doi:  10.1007/s00190-011-0524-5
[9] Shen Y Z, Li B F, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85 (4): 229-238 doi:  10.1007/s00190-010-0431-1
[10] Amiri-Simkooei A, Jazaeri S. Weighted Total Least Squares Formulated by Standard Least Squares Theory[J]. Journal of Geodetic Sciences, 2012, 2 (2): 113-124 doi:  10.2478/v10156-011-0036-5
[11] Schaffrin B, Felus Y A. An Algorithmic Approach to the Total Least-Squares Problem with Linear and Quadratic Constraints[J]. Studia Geophysica et Geodaetica, 2009, 53 (1): 1-16 doi:  10.1007/s11200-009-0001-2
[12] Zhang S L, Tong X H, Zhang K. A Solution to EIV Model with Inequality Constraints and Its Geodetic Applications[J]. Journal of Geodesy, 2013, 87 (1): 23-28 doi:  10.1007/s00190-012-0575-2
[13] Fang X. On Non-combinatorial Weighted Total Least Squares with Inequality Constraints[J]. Journal of Geodesy, 2014, 88 (8): 805-816 doi:  10.1007/s00190-014-0723-y
[14] Xu P L, Liu J N, Shi C. Total Least Squares Adjustment in Partial Errors-in-Variables Models: Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86 (8): 661-675 doi:  10.1007/s00190-012-0552-9
[15] Shi Y, Xu P L, Liu J N, et al. Alternative Formulae for Parameter Estimation in Partial Errors-inVariables Models[J]. Journal of Geodesy, 2015, 89 (1): 13-16 doi:  10.1007/s00190-014-0756-2
[16] Zeng W X, Liu J N, Yao Y B. On Partial Errors-inVariables Models with Inequality Constraints of Parameters and Variables[J]. Journal of Geodesy, 2015, 89 (2): 111-119 doi:  10.1007/s00190-014-0775-z
[17] 陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 2005

Chen Baolin. Theory and Algorithm in Optimization[M]. Beijing: Tsinghua University Press, 2005
[18] 谢建, 龙四春, 周璀. 不等式约束PEIV模型的最优性条件及SQP算法[J]. 武汉大学学报·信息科学版, 2020, 45 (7): 1 002-1 007 doi:  10.13203/j.whugis20180297

Xie Jian, Long Sichun, Zhou Cui. Optimality Conditions of Inequality Constrained Partial EIV Model and the SQP Algorithm[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1 002-1 007 doi:  10.13203/j.whugis20180297