[1] |
Cazenave A, Dominh K, Guinehut S, et al. Sea Level Budget over 2003-2008:A Reevaluation from GRACE Space Gravimetry, Satellite Altimetry and Argo[J]. Global and Planetary Change, 2009, 65(1/2):83-88 |
[2] |
Wang F, Shen Y, Chen Q, et al. Reduced Misclosure of Global Sea-Level Budget with Updated TongjiGrace2018 Solution[J]. Scientific Reports, 2021, 11(1):1-11. |
[3] |
Yi S, Sun W K, Heki K, et al. An Increase in the Rate of Global Mean Sea Level Rise since 2010[J]. Geophysical Research Letters, 2015, 42(10):3998-4006 |
[4] |
Dieng H B, Cazenave A, Meyssignac B, et al. New Estimate of the Current Rate of Sea Level Rise from a Sea Level Budget Approach[J]. Geophysical Research Letters, 2017, 44(8):3744-3751 |
[5] |
Church J A, White N J. A 20th Century Acceleration in Global Sea-Level Rise[J]. Geophysical Research Letters, 2006, 33(1) |
[6] |
Nicholls and Anny Cazenave R J. Sea-Level Rise and Its Impact on Coastal Zones[J]. Science, 2010, 328(5985):1517-1520 |
[7] |
Watson P. A New Perspective on Global Mean Sea Level (GMSL) Acceleration[J]. Geophysical Research Letters, 2016, 43:6478-6484 |
[8] |
Nerem R S, Beckley B D, Fasullo J T, et al. Climate-Change-Driven Accelerated Sea-Level Rise Detected in the Altimeter Era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9):2022-2025 |
[9] |
Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to Understanding Climate Change[J]. Nature Climate Change, 2019, 5(5):358-369 |
[10] |
Velicogna I, Mohajerani Y, Geruo A, et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE follow-on missions[J]. Geophysical Research Letters, 2020, 47(8):e2020GL087291. |
[11] |
Mu D P, Xu T H, Xu G C. An Investigation of Mass Changes in the Bohai Sea Observed by GRACE[J]. Journal of Geodesy, 2020, 94(9):1-11 |
[12] |
Mu D P, Yan H M, Feng W, et al. GRACE Leakage Error Correction with Regularization Technique:Case Studies in Greenland and Antarctica[J]. Geophysical Journal International, 2017, 208(3):1775-1786 |
[13] |
Chen J L, Tapley B, Wilson C, et al. Global Ocean Mass Change from GRACE and GRACE Follow-on and Altimeter and Argo Measurements[J]. Geophysical Research Letters, 2020, 47(22):e2020GL090656 |
[14] |
Chen J L, Tapley B, Save H, et al. Quantification of Ocean Mass Change Using Gravity Recovery and Climate Experiment, Satellite Altimeter, and Argo Floats Observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123:10 |
[15] |
.AVISO, 2018. SSALTO/DUACS user handbook:(M) SLA and (M) ADT near-real time and delayed time products CLS-DOS-NT-06-034, 4.1. |
[16] |
Peltier W R, Argus D F, Drummond R. Comment on "an Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model" by Purcell et Al[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(2):2019-2028 |
[17] |
Save H, Bettadpur S, Tapley B. High-Resolution CSR GRACE RL05 Mascons[J]. Journal of Geophysical Research:Solid Earth, 2016, 121:7547-7569 |
[18] |
Sun Y, Riva R, Ditmar P. Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J 2 from a Combination of GRACE Data and Geophysical Models[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(11):8352-8370 |
[19] |
Yang Y Y, Zhong M, Feng W, et al. Detecting Regional Deep Ocean Warming below 2000 Meter Based on Altimetry, GRACE, Argo, and CTD Data[J]. Advances in Atmospheric Sciences, 2021, 38:1778-1790 |
[20] |
Zhong Y L, Zhong M, Feng W, et al. Groundwater Depletion in the West Liaohe River Basin, China and Its Implications Revealed by GRACE and in Situ Measurements[J]. Remote Sens, 2018, 10:493 |
[21] |
Loomis B, Rachlin K, Luthcke S. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise[J]. Geophysical Research Letters, 2019, 46:6910-6917 |
[22] |
Loomis B, Rachlin K, Wiese D, et al. Replacing GRACE/GRACE-FO C30 with Satellite Laser Ranging:Impacts on Antarctic Ice Sheet Mass Change[J] Geophysical Research Letters, 2020, 47(3):e2019GL085488 |
[23] |
Uebbing B, Kusche J, Rietbroek R, et al. Processing Choices Affect Ocean Mass Estimates from GRACE[J]. Journal of Geophysical Research:Oceans, 2019, 124(2):1029-1044 |
[24] |
Watkins M M, Wiese D N, Yuan D, et al. Improved Methods for Observing Earth's Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(4):2648-2671 |
[25] |
Scanlon B R, Zhang Z Z, Save H, et al. Global Models Underestimate Large Decadal Declining and Rising Water Storage Trends Relative to GRACE Satellite Data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6):E1080-E1089 |
[26] |
Good S A, Martin M J, Rayner N A. EN4:Quality Controlled Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with Uncertainty Estimates[J]. Journal of Geophysical Research:Oceans, 2013, 118(12):6704-6716 |
[27] |
Yi S, Song C Q, Wang Q Y, et al. The Potential of GRACE Gravimetry to Detect the Heavy Rainfall-Induced Impoundment of a Small Reservoir in the Upper Yellow River[J]. Water Resources Research, 2017, 53:6562-6578 |
[28] |
Barnoud A, Pfeffer J, Guérou A, et al. Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget since 2016[J]. Geophysical Research Letters, 2021, 48(14):e2021GL092824 |