[1] Li M, Zang S, Zhang B, et al. A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-Contextual Information[J]. European Journal of Remote Sensing, 2014, 47: 389-411 doi:  10.5721/EuJRS20144723
[2] Pal M, Mather P M. Support Vector Machines for Classification in Remote Sensing[J]. International Journal of Remote Sensing, 2005, 26(5): 1 007-1 011 doi:  10.1080/01431160512331314083
[3] 李德仁.利用遥感影像进行变化检测[J].武汉大学学报·信息科学版, 2003, 28(S1): 7-12 http://ch.whu.edu.cn/CN/abstract/abstract4718.shtml

Li Deren. Change Detection from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 7-12 http://ch.whu.edu.cn/CN/abstract/abstract4718.shtml
[4] 眭海刚, 冯文卿, 李文卓, 等.多时相遥感影像变化检测方法综述[J].武汉大学学报·信息科学版, 2018, 43(12): 1 885-1 898 http://ch.whu.edu.cn/CN/abstract/abstract6272.shtml

Sui Haigang, Feng Wenqing, Li Wenzhuo, et al. Review of Change Detection Methods for Multi-temporal Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 885-1 898 http://ch.whu.edu.cn/CN/abstract/abstract6272.shtml
[5] 陈秋晓, 骆剑承, 周成虎, 等.基于多特征的遥感影像分类方法[J].遥感学报, 2004, 8(3): 239-245 http://d.old.wanfangdata.com.cn/Periodical/ygxb200403008

Chen Qiuxiao, Luo Jiancheng, Zhou Chenghu, et al. Classification of Remotely Sensed Imagery Using Multi-features Based Approach[J]. Journal of Remote Sensing, 2004, 8(3): 239-245 http://d.old.wanfangdata.com.cn/Periodical/ygxb200403008
[6] Fauvel M, Chanussot J, Benediktsson J A. Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas[J]. Eurasip Journal on Advances in Signal Processing, 2009(1): 783194 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_cfa943fe414fa52f88d3cba19757e700
[7] Xia J, Chanussot J, Du P, et al. (Semi-) Supervised Probabilistic Principal Component Analysis for Hyperspectral Remote Sensing Image Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(6): 2 224-2 236
[8] Bruzzone L, Carlin L. A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(9): 2 587-2 600 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d210254077eef9c3ba586e4c97ca0505
[9] Melgani F, Bruzzone L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(8): 1 778-1 790 doi:  10.1109-TGRS.2004.831865/
[10] Pal M. Random Forest Classifier for Remote Sensing Classification[J]. International Journal of Remote Sensing, 2005, 26(1): 217-222 doi:  10.1080/01431160412331269698
[11] Heermann P D, Khazenie N. Classification of Multispectral Remote Sensing Data Using a Backpropagation Neural Network[J]. IEEE Transactions on Geoscience & Remote Sensing, 1992, 30(1): 81-88 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0802.1412
[12] Zhong Y, Cao Q, Zhao J, et al. Optimal Decision Fusion for Urban Land-Use/Land-Cover Classification Based on Adaptive Differential Evolution Using Hyperspectral and LiDAR Data[J]. Remote Sensing, 2017, 9(8): 868 doi:  10.3390/rs9080868
[13] Morsy S, Shaker A, El-Rabbany A. Multispectral LiDAR Data for Land Cover Classification of Urban Areas[J]. Sensors, 2017, 17(5): 958 doi:  10.3390/s17050958
[14] Pullanagari R R, Kereszturi G, Yule I J, et al. Assessing the Performance of Multiple Spectral-Spatial Features of a Hyperspectral Image for Classification of Urban Land Cover Classes Using Support Vector Machines and Artificial Neural Network[J]. Journal of Applied Remote Sensing, 2017, 11(2): 026009 doi:  10.1117/1.JRS.11.026009
[15] Romero A, Gatta C, Camps-Valls G. Unsupervised Deep Feature Extraction for Remote Sensing Image Classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(3): 1 349-1 362
[16] Maggiori E, Tarabalka Y, Charpiat G, et al. Convolutional Neural Networks for Large-Scale Remote Sensing Image Classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 55(2): 645-657 http://d.old.wanfangdata.com.cn/Periodical/ldxb201903013
[17] 刘大伟, 韩玲, 韩晓勇.基于深度学习的高分辨率遥感影像分类研究[J].光学学报, 2016, 36(4): 298-306 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201604039

Liu Dawei, Han Ling, Han Xiaoyong. High Spatial Resolution Remote Sensing Image Classification Based on Deep Learning[J]. Acta Optica Sinica, 2016, 36(4): 298-306 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201604039
[18] Zhang C, Sargent I, Xin P, et al. VPRS-Based Regional Decision Fusion of CNN and MRF Classifications for Very Fine Resolution Remotely Sensed Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 56(8): 4 507-4 521
[19] Maggiori E, Tarabalka Y, Charpiat G, et al. Fully Convolutional Neural Networks for Remote Sensing Image Classification[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016
[20] Scott G J, England M R, Starms W A, et al. Training Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution Imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 549-553 doi:  10.1109/LGRS.2017.2657778
[21] Chen J, Gong P, He C, et al. Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(4): 369-379
[22] Ridd M K, Liu J. A Comparison of Four Algorithms for Change Detection in an Urban Environment[J]. Remote Sensing of Environment, 1998, 63(2): 95-100 doi:  10.1016/S0034-4257(97)00112-0
[23] 吴柯, 何坦, 杨叶涛.基于混合像元分解与EM算法的中低分辨率遥感影像变化检测[J].武汉大学学报·信息科学版, 2019, 44(4): 555-562 http://ch.whu.edu.cn/CN/abstract/abstract6403.shtml

Wu Ke, He Tan, Yang Yetao. Change Detection Method Based on Pixel Unmixing and EM Algorithm for Low and Medium Resolution Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 555-562 http://ch.whu.edu.cn/CN/abstract/abstract6403.shtml
[24] Hu J, Zhang Y. Seasonal Change of Land-Use/Land-Cover (LULC) Detection Using MODIS Data in Rapid Urbanization Regions: A Case Study of the Pearl River Delta Region (China)[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(4): 1 913-1 920
[25] Walter V. Object-Based Classification of Remote Sensing Data for Change Detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3-4): 225-238 doi:  10.1016/j.isprsjprs.2003.09.007
[26] Ghosh A, Mishra N S, Ghosh S. Fuzzy Clustering Algorithms for Unsupervised Change Detection in Remote Sensing Images[J]. Information Sciences, 2011, 181(4): 699-715 doi:  10.1016/j.ins.2010.10.016
[27] Lv P, Zhong Y, Zhao J, et al. Unsupervised Change Detection Based on Hybrid Conditional Random Field Model for High Spatial Resolution Remote Sensing Imagery[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 56(7): 4 002-4 015
[28] Amin A M E, Liu Q, Wang Y. Convolutional Neural Network Features Based Change Detection in Satellite Images[C]. The International Workshop on Pattern Recognition, Tokyo, Japan, 2016
[29] Iino S, Ito R, DoiK, et al. CNN-Based Generation of High-Accuracy Urban Distribution Maps Utilising SAR Satellite Imagery for Short-Term Change Monitoring[J]. International Journal of Image & Data Fusion, 2018, 9(4):1-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/19479832.2018.1491897
[30] Gu W, Lv Z, Hao M. Change Detection Method for Remote Sensing Images Based on an Improved Markov Random Field[J]. Multimedia Tools & Applications, 2015, 76(17): 1-16
[31] Cao G, Zhou L, Li Y. A New Change-Detection Method in High-Resolution Remote Sensing Images Based on a Conditional Random Field Model[J]. International Journal of Remote Sensing, 2016, 37(5): 1 173-1 189 doi:  10.1080/01431161.2016.1148284
[32] Liu J, Gong M, Qin K, et al. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 29(3): 545-559
[33] Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4): 640-651 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201918019
[34] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40(4): 834-848
[35] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2017
[36] Wang P, Chen P, Yuan Y, et al. Understanding Convolution for Semantic Segmentation[C]. The 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 2018
[37] Huang G, Liu Z, Maaten L V D, et al. Densely Connected Convolutional Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017