[1] Van Loan S, Van Dewalle J. The Total Least-Squares Problem:Computational Aspects and Analysis[M]. Philadelphia:Society for Industrial and Applied Mathematics, 1991
[2] 刘经南, 曾文宪, 徐培亮.整体最小二乘估计的研究进展[J].武汉大学学报·信息科学版, 2013, 38(5):505-512 http://ch.whu.edu.cn/CN/abstract/abstract2641.shtml

Liu Jingnan, Zeng Wenxian, Xu Peiliang. Overview of Total Least Squares Methods[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):505-512 http://ch.whu.edu.cn/CN/abstract/abstract2641.shtml
[3] 王乐洋, 许才军.总体最小二乘研究进展[J].武汉大学学报·信息科学版, 2013, 38(7):850-856 http://ch.whu.edu.cn/CN/abstract/abstract2703.shtml

Wang Leyang, Xu Caijun. Progress in Total Least Squares[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):850-856 http://ch.whu.edu.cn/CN/abstract/abstract2703.shtml
[4] Fang Xing. A Structured and Constrained Total Least-Squares Solution with Cross-Covariances[J]. Studia Geophysica et Geodaetica, 2014, 58(1):1-16 doi:  10.1007/s11200-012-0671-z
[5] Rosen J B, Park H, Glick J. Total Least Norm Formulation and Solution for Structured Problems[J]. SIAM Journal on Matrix Analysis & Applications, 1996, 17(1):110-126 http://www.researchgate.net/publication/239061482_Total_Least_Norm_Formulation_and_Solution_for_Structured_Problems
[6] Van Huffel S, Park H, Rosen J B. Formulation and Solution of Structured Total Least Norm Problems for Parameter Estimation[J]. IEEE Transactions on Signal Processing, 1996, 44(10):2464-2474 doi:  10.1109/78.539031
[7] Markovsky I, Huffel S V. On Weighted Structured Total Least Squares[C]. International Conference on Large-Scale Scientific Computing, Sozopol, Bulgaria, 2005
[8] Xu Peiliang, Liu Jiangnan, Shi Chuang. Total Least Squares Adjustment in Partial Errors-In-Variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675 doi:  10.1007/s00190-012-0552-9
[9] 王乐洋, 余航, 陈晓勇. Partial EIV模型的解法[J].测绘学报, 2016, 45(1):22-29 doi:  10.11947/j.AGCS.2016.20140560

Wang Leyang, Yu Hang, Chen Xiaoyong. An Algorithm for Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):22-29 doi:  10.11947/j.AGCS.2016.20140560
[10] 王乐洋, 许光煜, 温贵森.一种相关观测的Partial EIV模型求解方法[J].测绘学报, 2017, 46(8):44-53 http://d.old.wanfangdata.com.cn/Periodical/chxb201708007

Wang Leyang, Xu Guangyu, Wen Guisen. A Method for Partial EIV Model with Correlated Observations[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):44-53 http://d.old.wanfangdata.com.cn/Periodical/chxb201708007
[11] Fang Xing. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8):733-749 doi:  10.1007/s00190-013-0643-2
[12] Amiri-Simkooei A R, Jazaeri S. Weighted Total Least Squares Formulated by Standard Least Squares Theory[J]. Journal of Geodetic Science, 2012, 2(2):113-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2478/v10156-011-0036-5
[13] 姚宜斌, 黄书华, 陈家君.求解自回归模型参数的整体最小二乘新方法[J].武汉大学学报·信息科学版, 2014, 39(12):1463-1466 http://ch.whu.edu.cn/CN/abstract/abstract3142.shtml

Yao Yibin, Huang Shuhua, Chen Jiajun. A New Method of TLS to Solving the Autoregressive Model Parameter[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12):1463-1466 http://ch.whu.edu.cn/CN/abstract/abstract3142.shtml
[14] 姚宜斌, 熊朝晖, 张豹, 等.顾及设计矩阵误差的AR模型新解法[J].测绘学报, 2017, 46(11):1795-1801 doi:  10.11947/j.AGCS.2017.20170004

Yao Yibin, Xiong Zhaohui, Zhang Bao, et al.A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11):1795-1801 doi:  10.11947/j.AGCS.2017.20170004
[15] Teunissen P J G, Amiri-Simkooei A R. Least-Squares Variance Component Estimation[J]. Journal of Geodesy, 2008, 82(2):65-82 doi:  10.1007/s00190-007-0157-x
[16] Amiri-Simkooei A R. Least-Squares Variance Component Estimation: Theory and GPS Applications[D]. Delft: Delft University of Technology, 2007
[17] Amiri-Simkooei A R. Application of Least Squares Variance Component Estimation to Errors-In-Variables Models[J]. Journal of Geodesy, 2013, 87(10-12):935-944 doi:  10.1007/s00190-013-0658-8
[18] Mahboub V. Variance Component Estimation in Errors-In-Variables Models and a Rigorous Total Least-Squares Approach[J]. Studia Geophysica et Geodaetica, 2014, 58(1):17-40 doi:  10.1007/s11200-013-1150-x
[19] Xu Peiling, Liu Jingnan. Variance Components in Errors-In-Variables Models:Estimability, Stability and Bias Analysis[J]. Journal of Geodesy, 2014, 88(8):719-734 doi:  10.1007/s00190-014-0717-9
[20] Wang Leyang, Xu Guangyu. Variance Component Estimation for Partial Errors-In-Variables Models[J]. Studia Geophysica et Geodaetica, 2016, 60(1):35-55 doi:  10.1007/s11200-014-0975-2
[21] 王乐洋, 许光煜, 陈晓勇.附有相对权比的PEIV模型总体最小二乘平差[J].武汉大学学报·信息科学版, 2017, 42(6):857-863 http://ch.whu.edu.cn/CN/abstract/abstract5764.shtml

Wang Leyang, Xu Guangyu, Chen Xiaoyong. Total Least Squares Adjustment of Partial Errors-In-Variables Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6):857-863 http://ch.whu.edu.cn/CN/abstract/abstract5764.shtml
[22] 王乐洋, 温贵森.相关观测PEIV模型的最小二乘方差分量估计[J].测绘地理信息, 2018, 43(1):8-14 http://d.old.wanfangdata.com.cn/Periodical/chxxygc201801002

Wang Leyang, Wen Guisen. Least Squares Variance Components Estimation of PEIV Model with Correlated Observations[J]. Journal of Geomatics, 2018, 43(1):8-14 http://d.old.wanfangdata.com.cn/Periodical/chxxygc201801002
[23] 王乐洋, 温贵森. Partial EIV模型的非负最小二乘方差分量估计[J].测绘学报, 2017, 46(7):857-865 http://d.old.wanfangdata.com.cn/Periodical/chxb201707008

Wang Leyang, Wen Guisen. Non-negative Least Squares Variance Estimation of Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7):857-865 http://d.old.wanfangdata.com.cn/Periodical/chxb201707008
[24] Wang Leyang, Zhao Yingwen. Unscented Transformation with Scaled Symmetric Sampling Strategy for Precision Estimation of Total Least Squares[J]. Studia Geophysica et Geodaetica, 2017, 61(3):385-411 doi:  10.1007/s11200-016-1113-0
[25] Wang Leyang, Zhao Yingwen. The Scaled Unscented Transformation for Nonlinear Error Propagation Accuracy, Sensitivity and Applications[J]. Journal of Surveying Engineering, 2018, 144(1):04017022 doi:  10.1061/(ASCE)SU.1943-5428.0000243
[26] Wang Leyang, Zhao Yingwen. Second Order Approximating Function Method for Precision Estimation of Total Least Squares[J]. Journal of Surveying Engineering, 2019, 145(1):04018011 doi:  10.1061/(ASCE)SU.1943-5428.0000266
[27] 王新洲, 陶本藻, 邱卫宁, 等.高等测量平差[M].北京:测绘出版社, 2006

Wang Xinzhou, Tao Benzao, Qiu Weining, et al. Advanced Surveying Adjustment[M]. Beijing:Surveying and Mapping Press, 2006
[28] Teunissen P J G. Nonlinear Least-Squares[J]. Manuscripta Geodaetica, 1990, 15(3):137-150 http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201411036