[1] Limtanakool N, Dijst M, Schwanen T. The Influence of Socioeconomic Characteristics, Land Use and Travel Time Considerations on Mode Choice for Medium-and Longer-Distance Trips[J]. Journal of Transport Geography, 2006, 14(5):327-341 doi:  10.1016/j.jtrangeo.2005.06.004
[2] Hedau L, Sanghai S. Development of Trip Generation Model Using Activity Based Approach[J]. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, 2014(4):61-78
[3] 鲁仕维, 方志祥, 萧世伦, 等.城市群体移动模式研究中空间尺度影响的定量分析.武汉大学学报·信息科学版, 2016, 41(9):1199-1204 http://ch.whu.edu.cn/CN/abstract/abstract5528.shtml

Lu Shiwei, Fang Zhixiang, Shaw Shihlung, et al. Quantitative Analysis of the Effects of Spatial Scales on Intra-urban Human Mobility[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9):1199-1204 http://ch.whu.edu.cn/CN/abstract/abstract5528.shtml
[4] 陈佳, 胡波, 左小清, 等.利用手机定位数据的用户特征挖掘[J].武汉大学学报·信息科学版, 2014, 39(6):734-738 http://ch.whu.edu.cn/CN/abstract/abstract3001.shtml

Chen Jia, Hu Bo, Zuo Xiaoqing, et al. Personal Profile Mining Based on Mobile Phone Location Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):734-738 http://ch.whu.edu.cn/CN/abstract/abstract3001.shtml
[5] Tu W, Cao J Z, Yue Y, et al. Coupling Mobile Phone and Social Media Data:A New Approach to Understanding Urban Functions and Diurnal Patterns[J]. International Journal of Geographical Information Science, 2017, 31(12):2331-2358 doi:  10.1080/13658816.2017.1356464
[6] Frias-Martinez V, Virseda J, Frias-Martinez E. Socio-economic Levels and Human Mobility[C]. Qual Meets Quant Workshop-QMQ 2010 at the International Conference on Information and Communication Technologies and Development, London, UK, 2010
[7] Soto V, Frias-Martinez V, Virseda J, et al. Prediction of Socioeconomic Levels Using Cell Phone Records[C]. The 19th International Conference on User Modeling, Adaption and Personalization. Berlin, Heidelberg: Springer, 2011
[8] Blumenstock J, Cadamuro G, On R. Predicting Poverty and Wealth from Mobile Phone Metadata[J]. Science, 2015, 350(6264):1073-1076 doi:  10.1126/science.aac4420
[9] 郭思慧, 文聪聪, 何云, 等.居民出行活动特征与收入水平的关系——以上海市为例[J].地理科学进展, 2017, 36(9):1158-1166 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201709013

Guo Sihui, Wen Congcong, He Yun, et al. Relationship Between Travel Behavior and Income Level of Urban Residents:A Case Study in Shanghai Municipality[J]. Progress in Geography, 2017, 36(9):1158-1166 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201709013
[10] Kang C G, Gao S, Lin X, et al. Analyzing and Geo-visualizing Individual Human Mobility Patterns Using Mobile Call Records[C]. The 18th International Conference on Geoinformatics, Beijing, China, 2010
[11] Yuan Y, Raubal M, Liu Y. Correlating Mobile Phone Usage and Travel Behavior-A Case Study of Harbin, China[J]. Computers, Environment and Urban Systems, 2012, 36(2):118-130 doi:  10.1016/j.compenvurbsys.2011.07.003
[12] Yue Y, Zhuang Y, Yeh A, et al. Measurements of POI-based Mixed Use and Their Relationships with Neighbourhood Vibrancy[J]. International Journal of Geographical Information Science, 2017, 31(4):658-675 doi:  10.1080/13658816.2016.1220561
[13] Gonzalez C, Hidalgo C, Barabasi L. Understanding Individual Human Mobility Patterns[J]. Nature, 2008, 453:779-782 doi:  10.1038/nature06958
[14] Breiman L. Random Forests[J].Machine Learning, 2001, 45(1):5-32 doi:  10.1023/A:1010933404324
[15] Chawla V, Bowyer W, Hall O, et al. Smote:Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357 http://d.old.wanfangdata.com.cn/Periodical/dianzixb200911024