[1] Han S, Wang J. Integrated GPS/INS Navigation System with Dual-Rate Kalman Filter [J]. GPS Solutions, 2012, 16(3): 389-404 doi:  10.1007/s10291-011-0240-x
[2] Zhao Y, Becker M, Becker D, et al. Improving the Performance of Tight-Coupled GPS/INS Navigation by Using Time-Differenced GPS-Carrier-Phase Measurements and Low-Cost MEMS IMU [J]. Gyroscopy and Navigation, 2015, 6(2):133-142 doi:  10.1134/S2075108715020108
[3] Chang G. Robust Kalman Filtering Based on Mahalanobis Distance as Outlier Judging Criterion [J]. Journal of Geodesy, 2014, 88(4): 391-401 doi:  10.1007/s00190-013-0690-8
[4] Alspach D L, Sorenson H W. Nonlinear Bayesian Estimation Using Gaussian Sum Approximations [J]. IEEE Transactions on Automatic Control, 1972, 17(4): 439-448 doi:  10.1109/TAC.1972.1100034
[5] 曹轶之.非高斯/非线性滤波算法研究及其在GPS动态定位中的应用[D].郑州: 信息工程大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-90005-1013161239.htm

Cao Yizhi. Research of Non-Gaussian/Nonlinear Filtering Algorithms and Its Applications in GPS Kinematic Positioning [D]. Zhengzhou: Information Engineering University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-90005-1013161239.htm
[6] 唐炉亮, 杨雪, 靳晨, 等.基于约束高斯混合模型的车道信息获取[J].武汉大学学报·信息科学版, 2017, 42(3): 341-347 http://ch.whu.edu.cn/CN/abstract/abstract5684.shtml

Tang Luliang, Yang Xue, Jin Chen, et al. Traffic Lane Number Extraction Based on the Constrained Gaussian Mixture Model [J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 341-347 http://ch.whu.edu.cn/CN/abstract/abstract5684.shtml
[7] Ishikawa Y, Takeuchi I, Nakano R. Multi-directional Search from the Primitive Initial Point for Gaussian Mixture Estimation Using Variational Bayes Method [J]. Neural Networks, 2010, 23(3): 356-364 doi:  10.1016/j.neunet.2009.08.003
[8] Lim K L, Wang H. MAP Approximation to the Variational Bayes Gaussian Mixture Model and Application [J]. Soft Computing, 2017 (3): 1-13 http://cn.bing.com/academic/profile?id=1e46675d931c561e10ea5fa8b913bda4&encoded=0&v=paper_preview&mkt=zh-cn
[9] Vrettas M D, Cornford D, Opper M. Estimating Parameters in Stochastic Systems: A Variational Bayesian Approach [J]. Physica D Nonlinear Phenomena, 2011, 240(23): 1877-1900 doi:  10.1016/j.physd.2011.08.013
[10] Miao Z Y, Lv Y L, Xu D J, et al. Analysis of a Variational Bayesian Adaptive Cubature Kalman Filter Tracking Loop for High Dynamic Conditions [J]. GPS Solutions, 2017, 21(1): 111-122 doi:  10.1007/s10291-015-0510-0
[11] Stepanov O A, Chelpanov I B, Motorin A V. Accuracy of Sensor Bias Estimation and Its Relationship with Allan Variance [J]. Gyroscopy and Navigation, 2017, 8(1): 51-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=725670abb056ae1e19b5d91071445a17
[12] Niu X J, Chen Q J, Zang Q. Using Allan Variance to Analyze the Error Characteristics of GNSS Positioning [J]. GPS Solutions, 2014, 18(2): 231-242 doi:  10.1007/s10291-013-0324-x
[13] Niu X, Li Y, Zhang Q, et al. Observability Analysis of Non-holonomic Constraints for Land-Vehicle Navigation Systems [J]. Journal of Global Positioning Systems, 2012, 11(1): 80-88 doi:  10.5081/jgps