[1] 于明, 齐菲菲, 于洋, 等.基于立体视觉的三维重建算法[J].计算机工程与设计, 2013, 34(2):730-733 doi:  10.3969/j.issn.1000-7024.2013.02.066

Yu Ming, Qi Feifei, Yu Yang, et al. 3D Reconstruction Algorithm Based on Multi-view Stereo[J]. Computer Engineering and Design, 2013, 34(2):730-733 doi:  10.3969/j.issn.1000-7024.2013.02.066
[2] 刘金硕, 江庄毅, 徐亚渤, 等. PMVS算法的CPU多线程和GPU两级粒度并行策略[J].计算机科学, 2017, 44(2):296-301 http://d.old.wanfangdata.com.cn/Periodical/jsjkx201702050

Liu Jinshuo, Jiang Zhuangyi, Xu Yabo, et al. Multithread and GPU Parallel Schema on Patch-Based Multi-view Stereo Algorithm[J]. Computer Science, 2017, 44(2):296-301 http://d.old.wanfangdata.com.cn/Periodical/jsjkx201702050
[3] 肖汉, 周清累, 张祖勋.基于多GPU的Harris角点检测并行算法[J].武汉大学学报·信息科学版, 2012, 37(7):876-881 http://ch.whu.edu.cn/CN/abstract/abstract274.shtml

Xiao Han, Zhou Qinglei, Zhang Zuxun. Parallel Algorithm of Harris Corner Detection Based on Multi-GPU[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):876-881 http://ch.whu.edu.cn/CN/abstract/abstract274.shtml
[4] Zhang H, Xie Y, Heng P A. Accelerating Feature Extraction for Patch-based Multi-view Stereo Algorithm[C]. International Conference on Computer Design and Applications, Qinhuangdao, China, 2010
[5] 肖汉.基于CPU+GPU的影像匹配高效能异构并行计算研究[D].武汉: 武汉大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10486-1011404306.htm

Xiao Han. Research on High Efficiency Heterogeneous Parallel Computing Based on CPU+GPU in Image Matching[D]. Wuhan: Wuhan University, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10486-1011404306.htm
[6] 刘金硕, 程力, 王丽娜, 等.利用CUDA的剪切波数据三维可视化[J].武汉大学学报·信息科学版, 2013, 38(11):1271-1275 http://ch.whu.edu.cn/CN/abstract/abstract2791.shtml

Liu Jinshuo, Cheng Li, Wang Lina, et al. 3D Visua-lization of Shear Wave Data Based on CUDA[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11):1271-1275 http://ch.whu.edu.cn/CN/abstract/abstract2791.shtml
[7] 刘金硕, 邓娟, 周峥, 等.基于CUDA设计[M].北京:科学出版社, 2014:31-32, 92-94

Liu Jinshuo, Deng Juan, Zhou Zheng, et al. Parallel Programming Based on CUDA[M]. Beijing:Science Press, 2014:31-32, 92-94
[8] Romerolaorden D, Villazonterrazas J, Martinez-graullera O, et al. Analysis of Parallel Computing Strategies to Accelerate Ultrasound Imaging Processes[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27:3429-3440 doi:  10.1109/TPDS.2016.2544312
[9] 方旭东.面向大规模科学计算的CPU-GPU异构并行技术研究[D].长沙: 国防科学技术大学, 2009 http://cdmd.cnki.com.cn/Article/CDMD-90002-2010165682.htm

Fang Xudong. Research on CPU-GPU Heteroge-neous Parallel Technology for Large-Scale Scientific Computing[D]. Changsha: National University of Defense Technology, 2009 http://cdmd.cnki.com.cn/Article/CDMD-90002-2010165682.htm
[10] Ilic A, Sousa L. Collaborative Execution Environment for Heterogeneous Parallel Systems[C]. IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, Atlanta, USA, 2010
[11] Lee J, Samadi M, Park Y, et al. Transparent CPU-GPU Collaboration for Data-Parallel Kernels on Heterogeneous Systems[C]. The 22nd International Conference on Parallel Architectures and Compilation Techniques, Edinburgh, UK, 2013
[12] Ohshima S, Kise K, Katagiri T, et al. Parallel Processing of Matrix Multiplication in a CPU and GPU Heterogeneous Environment[C]. The 7th International Meeting on High Performance Computing for Computational Science, Rio de Janeiro, Brazil, 2006
[13] 裴颂文, 宁静, 张俊格. CPU-GPU异构多核系统的动态任务调度算法[J].计算机应用研究, 2016, 33(11):3315-3319 doi:  10.3969/j.issn.1001-3695.2016.11.026

Pei Songwen, Ning Jing, Zhang Junge. Dynamic Task Scheduling Algorithm Based on CPU-GPU Heterogeneous Multi-core System[J]. Application Research of Computers, 2016, 33(11):3315-3319 doi:  10.3969/j.issn.1001-3695.2016.11.026
[14] Heldens S, Varbanescu A L, Iosup A. Dynamic Load Balancing for High-Performance Praph Processing on Hybrid CPU-GPU Platforms[C]. The 6th Workshop on Irregular Applications: Architectures and Algorithms, Salt Lake City, USA, 2016
[15] Yaseen A, Ji H, Li Y H. A Load-Balancing Workload Distribution Scheme for Three-Body Interaction Computation on Graphics Processing Units(GPU)[J]. Journal of Parallel and Distributed Computing, 2016, 87:91-101 doi:  10.1016/j.jpdc.2015.10.003
[16] Wan L J, Li K L, Liu J, et al. Efficient CPU-GPU Cooperative Computing for Solving the Subset-Sum Problem[J]. Concurrency and Computation Practice and Experience, 2016, 28(2):492-516 doi:  10.1002/cpe.v28.2
[17] Yu C D, Wang W. Performance Models and Workload Distribution Algorithms for Optimizing a Hybrid CPU-GPU Multifrontal Solver[J]. Compututers and Mathematics with Applicatons, 2014, 67(7):1421-1437 doi:  10.1016/j.camwa.2014.01.013
[18] Shehab E, Algergawy A, Sarhan A. Accelerating Relational Database Operations Using Both CPU and GPU Co-processor[J]. Computers and Electrical Engineering, 2017, 57:69-80 doi:  10.1016/j.compeleceng.2016.12.014
[19] Chan L M, Srinivasan R. A Hybrid CPU-Graphics Processing Unit(GPU) Approach for Computationally Efficient Simulation-Optimization[J]. Computers and Chemical Engineering, 2016, 87:49-62 doi:  10.1016/j.compchemeng.2016.01.001
[20] Chavez D. Parallelizing Map Projection of Raster Data on Multi-core CPU and GPU Parallel Programming Frameworks[D]. Stockholm: KTH Royal Institute of Technology, 2016
[21] Gremse F, Hofter A, Razik L, et al. GPU-Acce-lerated Adjoint Algorithmic Differentiation[J]. Computer Physics Communications, 2016, 200:300-311 doi:  10.1016/j.cpc.2015.10.027
[22] 刘金硕, 曾秋梅, 邹斌, 等.快速鲁棒特征算法的CUDA加速优化[J].计算机科学, 2014, 41(4):24-27 doi:  10.3969/j.issn.1002-137X.2014.04.005

Liu Jinshuo, Zeng Qiumei, Zou Bin, et al. Speed-up Robust Feature Image Registration Algorithm Based on CUDA[J]. Computer Science, 2014, 41(4):24-27 doi:  10.3969/j.issn.1002-137X.2014.04.005