[1] 张文峰, 彭向阳, 陈锐民, 等.基于无人机红外视频的输电线路发热缺陷智能诊断技术[J].电网技术, 2014, 38 (5):1334-1338 http://d.old.wanfangdata.com.cn/Periodical/dwjs201405034

Zhang Wenfeng, Peng Xiangyang, Chen Ruimin, et al. Intelligent Diagnostic Techniques of Abnormal Heat Defect in Transmission Lines Based on Unmanned Helicopter Infrared Video[J]. Power System Technology, 2014, 38 (5): 1334-1338 http://d.old.wanfangdata.com.cn/Periodical/dwjs201405034
[2] 彭向阳, 陈驰, 饶章权, 等.基于无人机多传感器数据采集的电力线路安全巡检及智能诊断[J].高电压技术, 2015, 41(1):159-166 http://d.old.wanfangdata.com.cn/Periodical/gdyjs201501022

Peng Xiangyang, Chen Chi, Rao Zhangquan, et al. Safety Inspection and Intelligent Diagnosis of Transmission Line Based on Unmanned Helicopter of Sensor Data Acquisition[J].High Voltage Enginee- ring, 2015, 41(1):159-166 http://d.old.wanfangdata.com.cn/Periodical/gdyjs201501022
[3] 王银立, 闫斌.基于视觉的绝缘子"掉串"缺陷的检测与定位[J].计算机工程与设计, 2014, 35(2):583-584 doi:  10.3969/j.issn.1000-7024.2014.02.043

Wang Yinli, Yan Bin. Vision Based Detection and Location for Cracked Insulator[J]. Computer Engineering and Design, 2014, 35(2):583-584 doi:  10.3969/j.issn.1000-7024.2014.02.043
[4] 张晶晶, 韩军, 赵亚博, 等.形状感知的绝缘子识别与缺陷诊断[J].中国图象图形学报, 2014, 19(8):1194-1201 http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201408011

Zhang Jingjing, Han Jun, Zhao Yabo, et al. Insulator Recognition and Defects Detection Based on Shape Perceptual[J]. Journal of Image and Graphics, 2014, 19(8):1194-1201 http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201408011
[5] 姜浩然, 金立军, 闫书佳.航拍图像中绝缘子的识别与故障诊断[J].机电工程, 2015, 32(2):274-278 http://d.old.wanfangdata.com.cn/Periodical/jdgc201502025

Jiang Haoran, Jin Lijun, Yan Shujia. Recognition and Fault Diagnosis of Insulator String in Aerial Images[J]. Journal of Mechanical and Electrical Engineering, 2015, 32(2):274-278 http://d.old.wanfangdata.com.cn/Periodical/jdgc201502025
[6] 于兰英, 姚波, 吴文海, 等.一种基于多特征的绝缘子识别方法[J].电瓷避雷器, 2016(3):79-83 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcblq201603015

Yu Lanying, Yao Bo, Wu Wenhai, et al. Insulator Identification Method Based on Multi-feature[J]. Insulators and Surge Arresters, 2016(3) :79-83 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcblq201603015
[7] Wu Q, An J, Lin B. A Texture Segmentation Algorithm Based on PCA and Global Minimization Active Contour Model for Aerial Insulator Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(5): 1509-1518 doi:  10.1109/JSTARS.2012.2197672
[8] Zhang J, Yang R. Insulators Recognition for 220 kV/330 kV High-voltage Live-Line Cleaning Robot[C].18th International Conference on Pattern Recognition (ICPR 2006), Hong Kong, China, 2006
[9] Li W, Ye G, Huang F, et al. Recognition of Insulator Based on Developed MPEG-7 Texture Feature[J]. High Voltage Apparatus, 2010, doi: 10.1109/CISP.2010.5648283
[10] Oberweger M, Wendel A, Bischof H. Visual Recognition and Fault Detection for Power Line Insulators[C].19th Computer Vision Winter Workshop, Krtiny, Czech Republic, 2014
[11] Zhang X, An J, Chen F. A Simple Method of Tempered Glass Insulator Recognition from Airborne Image[C]. IEEE International Conference on Optoelectronics and Image Processing, Haikou, China, 2010
[12] 徐耀良, 张少成, 杨宁, 等.航拍影像中绝缘子的提取算法[J].上海电力学院学报, 2011, 27(5):515-518 doi:  10.3969/j.issn.1006-4729.2011.05.025

Xu Yaoliang, Zhang Shaocheng, Yang Ning, et al. An Algorithm to Extract Insulator Image from Aeral Image[J]. Journal of Shanghai University of Electric Power, 2011, 27(5): 515-518 doi:  10.3969/j.issn.1006-4729.2011.05.025
[13] 林聚财, 韩军, 陈舫明, 等.基于彩色图像的玻璃绝缘子缺陷诊断[J].电网技术, 2011, 35(1):127-133 http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201101023.htm

Lin Jucai, Han Jun, Chen Fangming, et al. Defects Detection of Glass Insulator Based on Color Image[J]. Power System Technology, 2011, 35(1):127-133 http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201101023.htm
[14] 葛玉敏, 李宝树, 赵书涛, 等.绝缘子图像中的特征目标提取[J].高压电器, 2009, 45(6):56-60 http://d.old.wanfangdata.com.cn/Periodical/gydq200906014

Ge Yumin, Li Baoshu, Zhao Shutao, et al. Methods to Extract Target in Insulator-Image[J]. High Voltage Apparatus, 2009, 45(6): 56-60 http://d.old.wanfangdata.com.cn/Periodical/gydq200906014
[15] Alexe B, Deselaers T, Ferrari V. Measuring the Objectness of Image Windows[J]. IEEE Transactions on Software Engineering, 2012, 34(11):2189-2202 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201605006
[16] Cheng Mingming, Zhang Ziming, Lin Wenyan, et al.BING: Binarized Normed Gradients for Objectness Estimation at 300 fps[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014
[17] Hare S, Saffari A, Torr P H. Efficient Online Structured Output Learning for Keypoint-Based Object Tracking[C].IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012
[18] 许可.卷积神经网络在图像识别上的应用的研究[D].杭州: 浙江大学, 2012

Xu Ke. Study of Convolutional Neural Network Applied on Image Recognition[D]. Hangzhou: Zhejiang University, 2012
[19] Krizhevsky A, Sutskever I, Hinton G E. Imagenet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems, 2012, doi: 10.1145/3065386
[20] Dalal N, Triggs B. Histograms of Oriented Gra- dients for Human Detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005